Simultaneous bias correction and image segmentation via L0 regularized Mumford-Shah model

Y. Duan, Huibin Chang, Weimin Huang, Jiayin Zhou
{"title":"Simultaneous bias correction and image segmentation via L0 regularized Mumford-Shah model","authors":"Y. Duan, Huibin Chang, Weimin Huang, Jiayin Zhou","doi":"10.1109/ICIP.2014.7025000","DOIUrl":null,"url":null,"abstract":"This paper presents a novel discrete Mumford-Shah model for the simultaneous bias correction and image segmentation(SBCIS) for images with intensity inhomogeneity. The model is based on the assumption that an image can be approximated by a product of true intensities and a bias field. Unlike the existing methods, where the true intensities are represented as a linear combination of characteristic functions of segmentation regions, we employ L0 gradient minimization to enforce a piecewise constant solution. We introduce a new neighbor term into the Mumford-Shah model to allow the true intensity of a pixel to be influenced by its immediate neighborhood. A two-stage segmentation method is applied to the proposed Mumford-Shah model. In the first stage, both the true intensities and bias field are obtained while the segmentation is done using the K-means clustering method in the second stage. Comparisons with the two-stage Mumford-Shah model show the advantages of our method in its ability in segmenting images with intensity inhomogeneity.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"252 1","pages":"6-40"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents a novel discrete Mumford-Shah model for the simultaneous bias correction and image segmentation(SBCIS) for images with intensity inhomogeneity. The model is based on the assumption that an image can be approximated by a product of true intensities and a bias field. Unlike the existing methods, where the true intensities are represented as a linear combination of characteristic functions of segmentation regions, we employ L0 gradient minimization to enforce a piecewise constant solution. We introduce a new neighbor term into the Mumford-Shah model to allow the true intensity of a pixel to be influenced by its immediate neighborhood. A two-stage segmentation method is applied to the proposed Mumford-Shah model. In the first stage, both the true intensities and bias field are obtained while the segmentation is done using the K-means clustering method in the second stage. Comparisons with the two-stage Mumford-Shah model show the advantages of our method in its ability in segmenting images with intensity inhomogeneity.
基于L0正则化Mumford-Shah模型的同时偏差校正和图像分割
本文提出了一种新的离散Mumford-Shah模型,用于强度不均匀图像的同时偏差校正和图像分割(SBCIS)。该模型是基于这样一个假设,即图像可以近似为真实强度和偏置场的乘积。与现有的方法不同,在现有方法中,真实强度被表示为分割区域特征函数的线性组合,我们使用L0梯度最小化来强制分段常数解。我们在Mumford-Shah模型中引入了一个新的邻居项,以允许像素的真实强度受到其直接邻居的影响。对所提出的Mumford-Shah模型采用了两阶段分割方法。在第一阶段,获得真实强度和偏置场,在第二阶段,使用K-means聚类方法进行分割。与两阶段Mumford-Shah模型的比较表明,我们的方法在分割具有强度不均匀性的图像方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信