{"title":"Intelligent and Adaptive Web Page Recommender System","authors":"Geeta Rani, V. Dhaka, Sonam, U. Pandey, P. Tiwari","doi":"10.4018/ijwsr.2021100102","DOIUrl":null,"url":null,"abstract":"In this manuscript, an Intelligent and Adaptive Web Page Recommender System is proposed that provides personalized, global and group mode of recommendations. The authors enhance the utility of a trie node for storing relevant web access statistics. The trie node enables dynamic clustering of users based on their evolving browsing patterns and allows a user to belong to multiple groups at each navigation step. The system takes cues from the field of crowd psychology to augment two parameters for modeling group behavior: Uniformity and Recommendation strength. The system continuously tracks the user’s responses in order to adaptively switch between different recommendation-criteria in the group and personalized modes. The experimental results illustrate that the system achieved the maximum F1 measure of 83.28% on CTI dataset which is a significant improvement over the 70% F1 measure reported by Automatic Clustering-based Genetic Algorithm, the prior web recommender system.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"13 1","pages":"27-50"},"PeriodicalIF":0.8000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.2021100102","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this manuscript, an Intelligent and Adaptive Web Page Recommender System is proposed that provides personalized, global and group mode of recommendations. The authors enhance the utility of a trie node for storing relevant web access statistics. The trie node enables dynamic clustering of users based on their evolving browsing patterns and allows a user to belong to multiple groups at each navigation step. The system takes cues from the field of crowd psychology to augment two parameters for modeling group behavior: Uniformity and Recommendation strength. The system continuously tracks the user’s responses in order to adaptively switch between different recommendation-criteria in the group and personalized modes. The experimental results illustrate that the system achieved the maximum F1 measure of 83.28% on CTI dataset which is a significant improvement over the 70% F1 measure reported by Automatic Clustering-based Genetic Algorithm, the prior web recommender system.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.