{"title":"Relaxation to a planar interface in the Mullins–Sekerka problem","authors":"Olga Chugreeva, F. Otto, Maria G. Westdickenberg","doi":"10.4171/IFB/415","DOIUrl":null,"url":null,"abstract":"We analyze the convergence rates to a planar interface in the Mullins-Sekerka model by applying a relaxation method based on relationships among distance, energy, and dissipation. The relaxation method was developed by two of the authors in the context of the 1-d Cahn-Hilliard equation and the current work represents an extension to a higher dimensional problem in which the curvature of the interface plays an important role. The convergence rates obtained are optimal given the assumptions on the initial data.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"76 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/IFB/415","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
We analyze the convergence rates to a planar interface in the Mullins-Sekerka model by applying a relaxation method based on relationships among distance, energy, and dissipation. The relaxation method was developed by two of the authors in the context of the 1-d Cahn-Hilliard equation and the current work represents an extension to a higher dimensional problem in which the curvature of the interface plays an important role. The convergence rates obtained are optimal given the assumptions on the initial data.
期刊介绍:
Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.