Video Segmentation via Multiple Granularity Analysis

Rui Yang, Bingbing Ni, Chao Ma, Yi Xu, Xiaokang Yang
{"title":"Video Segmentation via Multiple Granularity Analysis","authors":"Rui Yang, Bingbing Ni, Chao Ma, Yi Xu, Xiaokang Yang","doi":"10.1109/CVPR.2017.676","DOIUrl":null,"url":null,"abstract":"We introduce a Multiple Granularity Analysis framework for video segmentation in a coarse-to-fine manner. We cast video segmentation as a spatio-temporal superpixel labeling problem. Benefited from the bounding volume provided by off-the-shelf object trackers, we estimate the foreground/ background super-pixel labeling using the spatiotemporal multiple instance learning algorithm to obtain coarse foreground/background separation within the volume. We further refine the segmentation mask in the pixel level using the graph-cut model. Extensive experiments on benchmark video datasets demonstrate the superior performance of the proposed video segmentation algorithm.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"23 1","pages":"6383-6392"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We introduce a Multiple Granularity Analysis framework for video segmentation in a coarse-to-fine manner. We cast video segmentation as a spatio-temporal superpixel labeling problem. Benefited from the bounding volume provided by off-the-shelf object trackers, we estimate the foreground/ background super-pixel labeling using the spatiotemporal multiple instance learning algorithm to obtain coarse foreground/background separation within the volume. We further refine the segmentation mask in the pixel level using the graph-cut model. Extensive experiments on benchmark video datasets demonstrate the superior performance of the proposed video segmentation algorithm.
基于多粒度分析的视频分割
我们引入了一个多粒度分析框架,用于视频从粗到精的分割。我们将视频分割视为一个时空超像素标记问题。利用现成的目标跟踪器提供的边界体,我们使用时空多实例学习算法估计前景/背景超像素标记,以在体积内获得粗略的前景/背景分离。我们使用图切模型在像素级进一步细化分割掩码。在基准视频数据集上的大量实验证明了所提出的视频分割算法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信