Performing Parallel Monte Carlo and Moment Equations Methods for Itô and Stratonovich Stochastic Differential Systems: R Package Sim.DiffProc

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
A. Guidoum, Kamal Boukhetala
{"title":"Performing Parallel Monte Carlo and Moment Equations Methods for Itô and Stratonovich Stochastic Differential Systems: R Package Sim.DiffProc","authors":"A. Guidoum, Kamal Boukhetala","doi":"10.18637/jss.v096.i02","DOIUrl":null,"url":null,"abstract":"We introduce Sim.DiffProc, an R package for symbolic and numerical computations on scalar and multivariate systems of stochastic differential equations (SDEs). It provides users with a wide range of tools to simulate, estimate, analyze, and visualize the dynamics of these systems in both forms, Ito and Stratonovich. One of Sim.DiffProc key features is to implement the Monte Carlo method for the iterative evaluation and approximation of an interesting quantity at a fixed time on SDEs with parallel computing, on multiple processors on a single machine or a cluster of computers, which is an important tool to improve capacity and speed-up calculations. We also provide an easy-to-use interface for symbolic calculation and numerical approximation of the first and central second-order moments of SDEs (i.e., mean, variance and covariance), by solving a system of ordinary differential equations, which yields insights into the dynamics of stochastic systems. The final result object of Monte Carlo and moment equations can be derived and presented in terms of LATEX math expressions and visualized in terms of LATEX tables. Furthermore, we illustrate various features of the package by proposing a general bivariate nonlinear dynamic system of Haken-Zwanzig, driven by additive, linear and nonlinear multiplicative noises. In addition, we consider the particular case of a scalar SDE driven by three independent Wiener processes. The Monte Carlo simulation thereof is obtained through a transformation to a system of three equations. We also study some important applications of SDEs in different fields.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"123 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v096.i02","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 6

Abstract

We introduce Sim.DiffProc, an R package for symbolic and numerical computations on scalar and multivariate systems of stochastic differential equations (SDEs). It provides users with a wide range of tools to simulate, estimate, analyze, and visualize the dynamics of these systems in both forms, Ito and Stratonovich. One of Sim.DiffProc key features is to implement the Monte Carlo method for the iterative evaluation and approximation of an interesting quantity at a fixed time on SDEs with parallel computing, on multiple processors on a single machine or a cluster of computers, which is an important tool to improve capacity and speed-up calculations. We also provide an easy-to-use interface for symbolic calculation and numerical approximation of the first and central second-order moments of SDEs (i.e., mean, variance and covariance), by solving a system of ordinary differential equations, which yields insights into the dynamics of stochastic systems. The final result object of Monte Carlo and moment equations can be derived and presented in terms of LATEX math expressions and visualized in terms of LATEX tables. Furthermore, we illustrate various features of the package by proposing a general bivariate nonlinear dynamic system of Haken-Zwanzig, driven by additive, linear and nonlinear multiplicative noises. In addition, we consider the particular case of a scalar SDE driven by three independent Wiener processes. The Monte Carlo simulation thereof is obtained through a transformation to a system of three equations. We also study some important applications of SDEs in different fields.
执行平行蒙特卡罗和力矩方程方法Itô和Stratonovich随机微分系统:R包模拟。DiffProc
我们介绍Sim。DiffProc,一个R包符号和数值计算的标量和多元系统的随机微分方程(SDEs)。它为用户提供了广泛的工具来模拟、估计、分析和可视化这两种形式的系统动态,Ito和Stratonovich。Sim之一。DiffProc的主要特点是在并行计算的SDEs上,在单机或计算机集群上的多处理器上,实现蒙特卡罗方法在固定时间对感兴趣的量进行迭代评估和近似,这是提高容量和加速计算的重要工具。我们还提供了一个易于使用的界面,用于SDEs的一阶和中心二阶矩(即均值,方差和协方差)的符号计算和数值逼近,通过求解常微分方程系统,从而产生对随机系统动力学的见解。蒙特卡罗的最终结果对象和力矩方程可以用LATEX数学表达式来推导和表示,并可以用LATEX表来可视化。此外,我们通过提出一个由加性、线性和非线性乘性噪声驱动的一般二元非线性Haken-Zwanzig动态系统来说明该包的各种特征。此外,我们考虑了由三个独立的维纳过程驱动的标量SDE的特殊情况。通过对三方程系统的变换,得到了其蒙特卡罗模拟。我们还研究了SDEs在不同领域的一些重要应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信