{"title":"Biostratinomy of dune tracks in sub-0 °C temperature","authors":"Grzegorz Sadlok","doi":"10.1080/10420940.2021.1901694","DOIUrl":null,"url":null,"abstract":"Abstract Trackways left in dune sand spark intrigue with their ephemeral nature. Small animals (arthropods and vertebrates) leave their footprints in eolian sands but such tracks do not last long. Wind and avalanching may re-mobilize sand grains and obliterate their footprints, ultimately preventing them from entering fossil record. Some of these fleeting tracks are lucky enough to survive at the parting surfaces between sedimentary layers. This paper highlights the possible role that sub-0 °C temperatures play in the biostratinomy of eolian tracks. Water combined with sub-0 °C temperatures may create short-lasting ice cementation within the very top of an active sand layer—mm-scale crust. The temporal cement stabilizes the surface, inhibits the re-mobilization of sand particles and hinders the obliteration of footprints. Such crust may provide a brief time window of enhanced preservation potential, protecting tracks until incoming sand buries them. On the contrary, if the ice-cement crust forms before the passage of a small and light trackmaker, no tracks are formed at all. This is because the crust is impenetrable to the tiny feet of light animals. Therefore, sub-0 °C temperatures apparently may play both, positive and negative roles in the biostratinomy of eolian tracks.","PeriodicalId":51057,"journal":{"name":"Ichnos-An International Journal for Plant and Animal Traces","volume":"4 1","pages":"133 - 142"},"PeriodicalIF":0.8000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ichnos-An International Journal for Plant and Animal Traces","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/10420940.2021.1901694","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Trackways left in dune sand spark intrigue with their ephemeral nature. Small animals (arthropods and vertebrates) leave their footprints in eolian sands but such tracks do not last long. Wind and avalanching may re-mobilize sand grains and obliterate their footprints, ultimately preventing them from entering fossil record. Some of these fleeting tracks are lucky enough to survive at the parting surfaces between sedimentary layers. This paper highlights the possible role that sub-0 °C temperatures play in the biostratinomy of eolian tracks. Water combined with sub-0 °C temperatures may create short-lasting ice cementation within the very top of an active sand layer—mm-scale crust. The temporal cement stabilizes the surface, inhibits the re-mobilization of sand particles and hinders the obliteration of footprints. Such crust may provide a brief time window of enhanced preservation potential, protecting tracks until incoming sand buries them. On the contrary, if the ice-cement crust forms before the passage of a small and light trackmaker, no tracks are formed at all. This is because the crust is impenetrable to the tiny feet of light animals. Therefore, sub-0 °C temperatures apparently may play both, positive and negative roles in the biostratinomy of eolian tracks.
期刊介绍:
The foremost aim of Ichnos is to promote excellence in ichnologic research. Primary emphases center upon the ethologic and ecologic significance of tracemaking organisms; organism-substrate interrelationships; and the role of biogenic processes in environmental reconstruction, sediment dynamics, sequence or event stratigraphy, biogeochemistry, and sedimentary diagenesis. Each contribution rests upon a firm taxonomic foundation, although papers dealing solely with systematics and nomenclature may have less priority than those dealing with conceptual and interpretive aspects of ichnology. Contributions from biologists and geologists are equally welcome.
The format for Ichnos is designed to accommodate several types of manuscripts, including Research Articles (comprehensive articles dealing with original, fundamental research in ichnology), and Short Communications (short, succinct papers treating certain aspects of the history of ichnology, book reviews, news and notes, or invited comments dealing with current or contentious issues). The large page size and two-column format lend flexibility to the design of tables and illustrations. Thorough but timely reviews and rapid publication of manuscripts are integral parts of the process.