{"title":"Structural, Optical and Ionic Properties of PVA Capped CuS Quantum Dots","authors":"S. Nath, P. Kalita","doi":"10.4028/p-i9y6sp","DOIUrl":null,"url":null,"abstract":"Copper sulphide quantum dots were synthesized by a simple chemical route using ammonia (aq.) as a complexing agent in PVA matrix. Copper acetate monohydrate and thiourea were used as precursors. The particle sizes as obtained from XRD results were found to be in good agreement with those of HRTEM. The UV-Vis. absorption and PL emission spectra exhibited a systematic blue shift of absorption and emission respectively confirming quantum confinement effect in the synthesized quantum dots. The band gap as estimated from Tauc-plot increased from 3.26eV to 3.92eV with change of concentration of complexing agent. The FTIR spectra exhibited Cu-S stretching peaks characteristic of CuS. Ionic contributions of the electrolytic ionic CuS solution as measured by a standard conductivity cell clearly showed the semiconducting behavior of the product material. The synthesized material may be exploited in fabrication of an optoelectronic device in UV-blue region.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-i9y6sp","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Copper sulphide quantum dots were synthesized by a simple chemical route using ammonia (aq.) as a complexing agent in PVA matrix. Copper acetate monohydrate and thiourea were used as precursors. The particle sizes as obtained from XRD results were found to be in good agreement with those of HRTEM. The UV-Vis. absorption and PL emission spectra exhibited a systematic blue shift of absorption and emission respectively confirming quantum confinement effect in the synthesized quantum dots. The band gap as estimated from Tauc-plot increased from 3.26eV to 3.92eV with change of concentration of complexing agent. The FTIR spectra exhibited Cu-S stretching peaks characteristic of CuS. Ionic contributions of the electrolytic ionic CuS solution as measured by a standard conductivity cell clearly showed the semiconducting behavior of the product material. The synthesized material may be exploited in fabrication of an optoelectronic device in UV-blue region.
期刊介绍:
"Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results.
"Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited.
Authors retain the right to publish an extended and significantly updated version in another periodical.