Three‐wise independent random walks can be slightly unbounded

Pub Date : 2022-01-03 DOI:10.1002/rsa.21075
Shyam Narayanan
{"title":"Three‐wise independent random walks can be slightly unbounded","authors":"Shyam Narayanan","doi":"10.1002/rsa.21075","DOIUrl":null,"url":null,"abstract":"Recently, many streaming algorithms have utilized generalizations of the fact that the expected maximum distance of any 4‐wise independent random walk on a line over n steps is O(n)$$ O\\left(\\sqrt{n}\\right) $$ . In this paper, we show that 4‐wise independence is required for all of these algorithms, by constructing a 3‐wise independent random walk with expected maximum distance Ω(nlgn)$$ \\Omega \\left(\\sqrt{n}\\lg n\\right) $$ from the origin. We prove that this bound is tight for the first and second moment, and also extract a surprising matrix inequality from these results. Next, we consider a generalization where the steps Xi$$ {X}_i $$ are k‐wise independent random variables with bounded pth moments. We highlight the case k=4,p=2$$ k=4,p=2 $$ : here, we prove that the second moment of the furthest distance traveled is O∑Xi2$$ O\\left(\\sum {X}_i^2\\right) $$ . This implies an asymptotically stronger statement than Kolmogorov's maximal inequality that requires only 4‐wise independent random variables, and generalizes a recent result of Błasiok.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, many streaming algorithms have utilized generalizations of the fact that the expected maximum distance of any 4‐wise independent random walk on a line over n steps is O(n)$$ O\left(\sqrt{n}\right) $$ . In this paper, we show that 4‐wise independence is required for all of these algorithms, by constructing a 3‐wise independent random walk with expected maximum distance Ω(nlgn)$$ \Omega \left(\sqrt{n}\lg n\right) $$ from the origin. We prove that this bound is tight for the first and second moment, and also extract a surprising matrix inequality from these results. Next, we consider a generalization where the steps Xi$$ {X}_i $$ are k‐wise independent random variables with bounded pth moments. We highlight the case k=4,p=2$$ k=4,p=2 $$ : here, we prove that the second moment of the furthest distance traveled is O∑Xi2$$ O\left(\sum {X}_i^2\right) $$ . This implies an asymptotically stronger statement than Kolmogorov's maximal inequality that requires only 4‐wise independent random variables, and generalizes a recent result of Błasiok.
分享
查看原文
三智独立随机漫步可以稍微无界
最近,许多流算法都利用了这样一个事实,即任何4 - wise独立随机漫步在n步线上的期望最大距离为O(n)。$$ O\left(\sqrt{n}\right) $$ . 在本文中,我们通过构造一个期望最大距离Ω(nlgn)的3 - wise独立随机漫步来证明所有这些算法都需要4 - wise独立性。$$ \Omega \left(\sqrt{n}\lg n\right) $$ 从原点开始。我们证明了这个界对于一阶矩和二阶矩是紧的,并从这些结果中提取了一个令人惊讶的矩阵不等式。$$ {X}_i $$ 是具有有界PTH矩的k独立随机变量。我们强调k=4 p=2的情况$$ k=4,p=2 $$ 在这里,我们证明了最远距离的第二弯矩为O∑Xi2$$ O\left(\sum {X}_i^2\right) $$ . 这暗示了一个比只需要4个独立随机变量的Kolmogorov极大不等式更强的渐近命题,并推广了Błasiok的最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信