Extending fibrations of knot complements to ribbon disk complements

IF 2 1区 数学
Maggie Miller
{"title":"Extending fibrations of knot complements to ribbon disk complements","authors":"Maggie Miller","doi":"10.2140/gt.2021.25.1479","DOIUrl":null,"url":null,"abstract":"We show that if $K$ is a fibered ribbon knot in $S^3=\\partial B^4$ bounding ribbon disk $D$, then with a transversality condition the fibration on $S^3\\setminus\\nu(K)$ extends to a fibration of $B^4\\setminus\\nu(D)$. This partially answers a question of Casson and Gordon. In particular, we show the fibration always extends when $D$ has exactly two local minima. More generally, we construct movies of singular fibrations on $4$-manifolds and describe a sufficient property of a movie to imply the underlying $4$-manifold is fibered over $S^1$.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2018-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.1479","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We show that if $K$ is a fibered ribbon knot in $S^3=\partial B^4$ bounding ribbon disk $D$, then with a transversality condition the fibration on $S^3\setminus\nu(K)$ extends to a fibration of $B^4\setminus\nu(D)$. This partially answers a question of Casson and Gordon. In particular, we show the fibration always extends when $D$ has exactly two local minima. More generally, we construct movies of singular fibrations on $4$-manifolds and describe a sufficient property of a movie to imply the underlying $4$-manifold is fibered over $S^1$.
将结补体的纤维延伸到带盘补体
我们证明,如果$K$是$S^3=\partial B^4$绑定带盘$D$中的纤维带结,那么在横向条件下,$S^3\setminus\nu(K)$上的纤维化延伸到$B^4\setminus\nu(D)$上的纤维化。这部分地回答了卡森和戈登的一个问题。特别地,我们表明当$D$恰好有两个局部极小值时,纤维化总是延长的。更一般地说,我们在$4$ -流形上构造奇异纤维的电影,并描述电影的一个足够的性质来暗示底层的$4$ -流形在$S^1$上纤维化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信