On Approximate Controllability of Second Order Fractional Impulsive Stochastic Differential System with Nonlocal, State-dependent Delay and Poisson Jumps
{"title":"On Approximate Controllability of Second Order Fractional Impulsive Stochastic Differential System with Nonlocal, State-dependent Delay and Poisson Jumps","authors":"K. Thiagu","doi":"10.11648/J.AJAM.20210902.13","DOIUrl":null,"url":null,"abstract":"The main scope of this paper is to focus the approximate controllability of second order (q∈(1,2]) fractional impulsive stochastic differential system with nonlocal, state-dependent delay and Poisson umps in Hilbert spaces. The existence of mild solutions is derived by using Schauder fixed point theorem. Sufficient conditions for the approximate controllability are established by under the assumptions that the corresponding linear system is approximately controllable and it is checked by using Lebesgue dominated convergence theorem. The main results are completly based on the results that the existence and approximate controllability of the fractional stochastic system of order 1<q≤2 and are derived by using stochastic analysis theory, fixed point technique, q-order cosine family {Ca(t)}t≥0, new set of novel sufficient conditions and methods adopted directly from deterministic fractional equations for the second order nonlinear impulsive fractional nonlocal stochastic differential systems with state-dependent delay and Poisson jumps in Hildert space H. Finally an example is added to illustrate the main results.","PeriodicalId":91196,"journal":{"name":"American journal of applied mathematics and statistics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of applied mathematics and statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJAM.20210902.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The main scope of this paper is to focus the approximate controllability of second order (q∈(1,2]) fractional impulsive stochastic differential system with nonlocal, state-dependent delay and Poisson umps in Hilbert spaces. The existence of mild solutions is derived by using Schauder fixed point theorem. Sufficient conditions for the approximate controllability are established by under the assumptions that the corresponding linear system is approximately controllable and it is checked by using Lebesgue dominated convergence theorem. The main results are completly based on the results that the existence and approximate controllability of the fractional stochastic system of order 1