В. С. Захвалинский, Е. А. Пилюк, А. В. Кочура, Л. А. Моргун, А. Б. Давыдов, Аунг Зо Хтет, В. В. Родионов, Б.А. Аронзон
{"title":"Влияние ориентации игольчатых включений NiSb на температурную зависимость сопротивления в монокристаллах Cd-=SUB=-0.95-=/SUB=-Ni-=SUB=-0.05-=/SUB=-Sb","authors":"В. С. Захвалинский, Е. А. Пилюк, А. В. Кочура, Л. А. Моргун, А. Б. Давыдов, Аунг Зо Хтет, В. В. Родионов, Б.А. Аронзон","doi":"10.21883/ftt.2023.03.54736.548","DOIUrl":null,"url":null,"abstract":"A composite Cd0.95Ni0.05Sb crystal consisting of CdSb and NiSb inclusions was obtained by the modified Bridgman method. It was shown by the methods of scanning electron microscopy, X-ray phase analysis, energy-dispersive X-ray spectroscopy, and studies of Raman spectra, that the main CdSb matrix was a block single crystal (orthorhombic Pbca structure) containing microcrystalline acicular inclusions of the second NiSb phase (hexagonal structure of the NiAs type P63/mmc). It has been found that the anisotropy of single-crystal NiSb needles in samples of the Cd0.95Ni0.05Sb crystalline composite (needles are directed along and across the current direction) significantly affects the resistance and magnetoresistance of the crystal. The interface is a needle-like inclusion - the matrix can become superconducting, which affects the conductivity of the composite as a whole. However, this superconductivity is insufficient for the transition at the experimental temperatures to the superconducting phase with zero resistance of the composite.","PeriodicalId":24077,"journal":{"name":"Физика твердого тела","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Физика твердого тела","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21883/ftt.2023.03.54736.548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A composite Cd0.95Ni0.05Sb crystal consisting of CdSb and NiSb inclusions was obtained by the modified Bridgman method. It was shown by the methods of scanning electron microscopy, X-ray phase analysis, energy-dispersive X-ray spectroscopy, and studies of Raman spectra, that the main CdSb matrix was a block single crystal (orthorhombic Pbca structure) containing microcrystalline acicular inclusions of the second NiSb phase (hexagonal structure of the NiAs type P63/mmc). It has been found that the anisotropy of single-crystal NiSb needles in samples of the Cd0.95Ni0.05Sb crystalline composite (needles are directed along and across the current direction) significantly affects the resistance and magnetoresistance of the crystal. The interface is a needle-like inclusion - the matrix can become superconducting, which affects the conductivity of the composite as a whole. However, this superconductivity is insufficient for the transition at the experimental temperatures to the superconducting phase with zero resistance of the composite.