Data-Driven Simulation of Contagions in Public Venues

Stefano Guarino, D. Torre, M. Bernaschi, Alessandro Celestini, Marco Cianfriglia, Enrico Mastrostefano, L. Zastrow
{"title":"Data-Driven Simulation of Contagions in Public Venues","authors":"Stefano Guarino, D. Torre, M. Bernaschi, Alessandro Celestini, Marco Cianfriglia, Enrico Mastrostefano, L. Zastrow","doi":"10.23919/ANNSIM52504.2021.9552154","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic triggered a global research effort to define and assess timely and effective containment policies. Understanding the role that specific venues play in the dynamics of epidemic spread is critical to guide the implementation of fine-grained non-pharmaceutical interventions (NPIs). In this paper, we present a new model of context-dependent interactions that integrates information about the surrounding territory and the social fabric. Building on this model, we developed an open-source data-driven simulator of the patterns of fruition of specific gathering places that can be easily configured to project and compare multiple scenarios. We focused on the greatest park of the City of Florence, Italy, to provide experimental evidence that our simulator produces contact graphs with unique, realistic features, and that gaining control of the mechanisms that govern interactions at the local scale allows to unveil and possibly control non-trivial aspects of the epidemic.","PeriodicalId":6782,"journal":{"name":"2021 Annual Modeling and Simulation Conference (ANNSIM)","volume":"66 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Annual Modeling and Simulation Conference (ANNSIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ANNSIM52504.2021.9552154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The COVID-19 pandemic triggered a global research effort to define and assess timely and effective containment policies. Understanding the role that specific venues play in the dynamics of epidemic spread is critical to guide the implementation of fine-grained non-pharmaceutical interventions (NPIs). In this paper, we present a new model of context-dependent interactions that integrates information about the surrounding territory and the social fabric. Building on this model, we developed an open-source data-driven simulator of the patterns of fruition of specific gathering places that can be easily configured to project and compare multiple scenarios. We focused on the greatest park of the City of Florence, Italy, to provide experimental evidence that our simulator produces contact graphs with unique, realistic features, and that gaining control of the mechanisms that govern interactions at the local scale allows to unveil and possibly control non-trivial aspects of the epidemic.
公共场所传染病的数据驱动模拟
2019冠状病毒病大流行引发了全球研究努力,以确定和评估及时有效的遏制政策。了解特定场所在流行病传播动态中发挥的作用,对于指导实施细粒度非药物干预措施至关重要。在本文中,我们提出了一种新的情境依赖互动模型,该模型集成了有关周围领土和社会结构的信息。在这个模型的基础上,我们开发了一个开源的数据驱动模拟器,可以很容易地配置为项目和比较多个场景的特定采集地点的成果模式。我们将重点放在意大利佛罗伦萨市最大的公园,以提供实验证据,证明我们的模拟器产生具有独特、逼真特征的接触图,并获得控制当地尺度上控制相互作用的机制,从而揭示并可能控制疫情的重要方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信