An improvement of algorithms to solve under-defined systems of multivariate quadratic equations

IF 0.4 Q4 MATHEMATICS, APPLIED
Yasufumi Hashimoto
{"title":"An improvement of algorithms to solve under-defined systems of multivariate quadratic equations","authors":"Yasufumi Hashimoto","doi":"10.14495/jsiaml.15.53","DOIUrl":null,"url":null,"abstract":"The problem of solving a system of multivariate quadratic equations over a finite field is known to be hard in general. However, there have been several algorithms of solving the system of quadratic equations efficiently when the number of variables is sufficiently larger than the number of equations (e.g., Kipnis et al., Eurocrypt 1999, Thomae-Wolf, PKC 2012, Cheng et al., PQCrypto 2014 and Furue et al., PQCrypto 2021). In the present paper, we propose a new algorithm which is available if the number of variables is smaller than that required in the previously given algorithms. We also analyze the security of MAYO, a variant of UOV, proposed in SAC 2021 and submitted to NIST’s standardization project of additional digital signature schemes for Post-Quantum Cryptography.","PeriodicalId":42099,"journal":{"name":"JSIAM Letters","volume":"189 1","pages":"53-56"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSIAM Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14495/jsiaml.15.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The problem of solving a system of multivariate quadratic equations over a finite field is known to be hard in general. However, there have been several algorithms of solving the system of quadratic equations efficiently when the number of variables is sufficiently larger than the number of equations (e.g., Kipnis et al., Eurocrypt 1999, Thomae-Wolf, PKC 2012, Cheng et al., PQCrypto 2014 and Furue et al., PQCrypto 2021). In the present paper, we propose a new algorithm which is available if the number of variables is smaller than that required in the previously given algorithms. We also analyze the security of MAYO, a variant of UOV, proposed in SAC 2021 and submitted to NIST’s standardization project of additional digital signature schemes for Post-Quantum Cryptography.
求解多元二次方程欠定义系统算法的改进
一般来说,求解有限域上的多元二次方程组是一个难题。然而,当变量数量足够大于方程数量时,已经有几种有效求解二次方程系统的算法(例如,Kipnis等人,Eurocrypt 1999, Thomae-Wolf, PKC 2012, Cheng等人,PQCrypto 2014和fuue等人,PQCrypto 2021)。在本文中,我们提出了一种新的算法,当变量的数量小于先前给出的算法所需的数量时,该算法是可用的。我们还分析了MAYO的安全性,这是UOV的一种变体,在SAC 2021中提出,并提交给NIST的后量子加密的其他数字签名方案标准化项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JSIAM Letters
JSIAM Letters MATHEMATICS, APPLIED-
自引率
25.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信