Big flip graphs and their automorphism groups

Pub Date : 2022-01-27 DOI:10.3336/gm.58.1.09
Assaf Bar-Natan, Advay Goel, Brendan Halstead, P. Hamrick, Sumedh Shenoy, R. Verma
{"title":"Big flip graphs and their automorphism groups","authors":"Assaf Bar-Natan, Advay Goel, Brendan Halstead, P. Hamrick, Sumedh Shenoy, R. Verma","doi":"10.3336/gm.58.1.09","DOIUrl":null,"url":null,"abstract":"In this paper, we study the relationship between the mapping class\n group of an infinite-type surface and the simultaneous flip graph,\n a variant of the flip graph for infinite-type surfaces defined by\n Fossas and Parlier [6]. We show that the extended\n mapping class group is isomorphic to a proper subgroup of the\n automorphism group of the flip graph, unlike in the finite-type\n case. This shows that Ivanov's metaconjecture, which states that\n any “sufficiently rich\" object associated to a finite-type surface\n has the extended mapping class group as its automorphism group, does\n not extend to simultaneous flip graphs of infinite-type surfaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.58.1.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the relationship between the mapping class group of an infinite-type surface and the simultaneous flip graph, a variant of the flip graph for infinite-type surfaces defined by Fossas and Parlier [6]. We show that the extended mapping class group is isomorphic to a proper subgroup of the automorphism group of the flip graph, unlike in the finite-type case. This shows that Ivanov's metaconjecture, which states that any “sufficiently rich" object associated to a finite-type surface has the extended mapping class group as its automorphism group, does not extend to simultaneous flip graphs of infinite-type surfaces.
分享
查看原文
大翻转图及其自同构群
本文研究了无限型曲面的映射类群与同时翻转图(Fossas和parliamentary[6]定义的无限型曲面的翻转图的一个变体)之间的关系。我们证明了扩展映射类群与翻转图的自同构群的一个固有子群是同构的,与有限型情况不同。这表明Ivanov的元猜想,即任何与有限型曲面相关的“足够丰富”的对象都有扩展映射类群作为其自同构群,不能推广到无限型曲面的同时翻转图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信