{"title":"Control of reaction-diffusion models in biology and social sciences","authors":"Domènec Ruiz-Balet, E. Zuazua","doi":"10.3934/mcrf.2022032","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>These lecture notes address the controllability under state constraints of reaction-diffusion equations arising in socio-biological contexts. We restrict our study to scalar equations with monostable and bistable nonlinearities.</p><p style='text-indent:20px;'>The uncontrolled models describing, for instance, population dynamics, concentrations of chemicals, temperatures, etc., intrinsically preserve pointwise bounds of the states that represent a proportion, volume-fraction, or density. This is guaranteed, in the absence of control, by the maximum or comparison principle.</p><p style='text-indent:20px;'>We focus on the classical controllability problem, in which one aims to drive the system to a final target, for instance, a steady-state. In this context the state is required to preserve, in the presence of controls, the pointwise bounds of the uncontrolled dynamics.</p><p style='text-indent:20px;'>The presence of constraints introduces significant added complexity for the control process. They may force the needed control-time to be large enough or even make some natural targets to be unreachable, due to the presence of barriers that the controlled trajectories might not be able to overcome.</p><p style='text-indent:20px;'>We develop and present a general strategy to analyze these problems. We show how the combination of the various intrinsic qualitative properties of the systems' dynamics and, in particular, the use of traveling waves and steady-states' paths, can be employed to build controls driving the system to the desired target.</p><p style='text-indent:20px;'>We also show how, depending on the value of the Allee parameter and on the size of the domain in which the process evolves, some natural targets might become unreachable. This is consistent with empirical observations in the context of endangered minoritized languages and species at risk of extinction.</p><p style='text-indent:20px;'>Further recent extensions are presented, and open problems are settled. All the discussions are complemented with numerical simulations to illustrate the main methods and results.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2022032","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
These lecture notes address the controllability under state constraints of reaction-diffusion equations arising in socio-biological contexts. We restrict our study to scalar equations with monostable and bistable nonlinearities.
The uncontrolled models describing, for instance, population dynamics, concentrations of chemicals, temperatures, etc., intrinsically preserve pointwise bounds of the states that represent a proportion, volume-fraction, or density. This is guaranteed, in the absence of control, by the maximum or comparison principle.
We focus on the classical controllability problem, in which one aims to drive the system to a final target, for instance, a steady-state. In this context the state is required to preserve, in the presence of controls, the pointwise bounds of the uncontrolled dynamics.
The presence of constraints introduces significant added complexity for the control process. They may force the needed control-time to be large enough or even make some natural targets to be unreachable, due to the presence of barriers that the controlled trajectories might not be able to overcome.
We develop and present a general strategy to analyze these problems. We show how the combination of the various intrinsic qualitative properties of the systems' dynamics and, in particular, the use of traveling waves and steady-states' paths, can be employed to build controls driving the system to the desired target.
We also show how, depending on the value of the Allee parameter and on the size of the domain in which the process evolves, some natural targets might become unreachable. This is consistent with empirical observations in the context of endangered minoritized languages and species at risk of extinction.
Further recent extensions are presented, and open problems are settled. All the discussions are complemented with numerical simulations to illustrate the main methods and results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.