Mahdi Hermassi, Saber Krim, Y. Krim, Mohamed Ali Hajjaji, A. Mtibaa, M. Mimouni
{"title":"Xilinx-FPGA for Real-Time Implementation of Vector Control Strategies for a Grid-Connected Variable-Speed Wind Energy Conversion System","authors":"Mahdi Hermassi, Saber Krim, Y. Krim, Mohamed Ali Hajjaji, A. Mtibaa, M. Mimouni","doi":"10.1109/IC_ASET53395.2022.9765935","DOIUrl":null,"url":null,"abstract":"This paper proposes a Xilinx Zynq-FPGA (Field Programmable Gate Array) for real time hardware implementation of a vector control strategy for a grid-connected variable-speed wind energy conversion system. In order to overcome the problem of important computation time and the control loop delay due to the sequential processing of the control algorithm for wind generator, a Xilinx Zynq-FPGA is proposed as an alternative solution, thanks to its parallel processing. In fact, the Xilinx Zynq-FPGA is characterized by a hardware architecture with parallel computation. Indeed, the FPGA technology has great advantages like the programmable wired function, the fast computing capability, the shorter design cycle, the integrated processor, the low power consumption and the higher density. The studied system is composed of a wind turbine, a permanent magnet synchronous generator, and two converters (a rectifier and an inverter) linked by a DC bus. The system is connected to the grid through a resistor–inductor filter. The proposed control strategy performances are evaluated by digital simulation utilizing an Xilinx System Generator (XSG) toolbox that guaranties rapid and efficient prototyping of the implemented architecture on the FPGA device. In fact, the hardware architectures of the rectifier vector control and the inverter vector control are designed using the XSG tool. The obtained results demonstrate that the XSG simulation offers better results in terms of tracking and accuracy.","PeriodicalId":6874,"journal":{"name":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"120 1","pages":"49-54"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC_ASET53395.2022.9765935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes a Xilinx Zynq-FPGA (Field Programmable Gate Array) for real time hardware implementation of a vector control strategy for a grid-connected variable-speed wind energy conversion system. In order to overcome the problem of important computation time and the control loop delay due to the sequential processing of the control algorithm for wind generator, a Xilinx Zynq-FPGA is proposed as an alternative solution, thanks to its parallel processing. In fact, the Xilinx Zynq-FPGA is characterized by a hardware architecture with parallel computation. Indeed, the FPGA technology has great advantages like the programmable wired function, the fast computing capability, the shorter design cycle, the integrated processor, the low power consumption and the higher density. The studied system is composed of a wind turbine, a permanent magnet synchronous generator, and two converters (a rectifier and an inverter) linked by a DC bus. The system is connected to the grid through a resistor–inductor filter. The proposed control strategy performances are evaluated by digital simulation utilizing an Xilinx System Generator (XSG) toolbox that guaranties rapid and efficient prototyping of the implemented architecture on the FPGA device. In fact, the hardware architectures of the rectifier vector control and the inverter vector control are designed using the XSG tool. The obtained results demonstrate that the XSG simulation offers better results in terms of tracking and accuracy.