{"title":"Fiber dominant tensile and creep strength at 600°C of SCS-6 fiber reinforced titanium alloys","authors":"P. Peters, J. Hemptenmacher, K. Weber, H. Assler","doi":"10.1520/CTR10931J","DOIUrl":null,"url":null,"abstract":"The influence of the fiber strength on the unidirectional tensile and creep strength at 600°C has been investigated. Single fiber tensile tests are performed at 600°C and the resulting Weibull strength distribution is compared with the room temperature distribution. The 600°C characteristic strength is found to be only 7.6% smaller than that at room temperature. Fibers extracted from loaded-unloaded specimens at 600°C show more failures than expected on the basis of the 600°C Weibull strength distribution determined as manufactured fibers. From this and other experiments it is concluded, that the in-situ tensile strength of fibers at 600°C (embedded in the titanium) is smaller than that of manufactured fibers. Relaxation behavior of the unreinforced titanium alloys was investigated and described with the aid of Bailey-Norton creep law. This enables description of the stress redistribution during creep of the unidirectional composites performed in short time creep experiments up to ∼100 h. The creep strength has been described considering stress relaxation in the matrix and slow defect growth in the fibers. From the shape of the creep strength-life curve it is concluded that three different ranges of defect growth contribute to the creep strength.","PeriodicalId":15514,"journal":{"name":"Journal of Composites Technology & Research","volume":"6 1","pages":"246-253"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Technology & Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/CTR10931J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The influence of the fiber strength on the unidirectional tensile and creep strength at 600°C has been investigated. Single fiber tensile tests are performed at 600°C and the resulting Weibull strength distribution is compared with the room temperature distribution. The 600°C characteristic strength is found to be only 7.6% smaller than that at room temperature. Fibers extracted from loaded-unloaded specimens at 600°C show more failures than expected on the basis of the 600°C Weibull strength distribution determined as manufactured fibers. From this and other experiments it is concluded, that the in-situ tensile strength of fibers at 600°C (embedded in the titanium) is smaller than that of manufactured fibers. Relaxation behavior of the unreinforced titanium alloys was investigated and described with the aid of Bailey-Norton creep law. This enables description of the stress redistribution during creep of the unidirectional composites performed in short time creep experiments up to ∼100 h. The creep strength has been described considering stress relaxation in the matrix and slow defect growth in the fibers. From the shape of the creep strength-life curve it is concluded that three different ranges of defect growth contribute to the creep strength.