Choosy: max-min fair sharing for datacenter jobs with constraints

A. Ghodsi, M. Zaharia, S. Shenker, I. Stoica
{"title":"Choosy: max-min fair sharing for datacenter jobs with constraints","authors":"A. Ghodsi, M. Zaharia, S. Shenker, I. Stoica","doi":"10.1145/2465351.2465387","DOIUrl":null,"url":null,"abstract":"Max-Min Fairness is a flexible resource allocation mechanism used in most datacenter schedulers. However, an increasing number of jobs have hard placement constraints, restricting the machines they can run on due to special hardware or software requirements. It is unclear how to define, and achieve, max-min fairness in the presence of such constraints. We propose Constrained Max-Min Fairness (CMMF), an extension to max-min fairness that supports placement constraints, and show that it is the only policy satisfying an important property that incentivizes users to pool resources. Optimally computing CMMF is challenging, but we show that a remarkably simple online scheduler, called Choosy, approximates the optimal scheduler well. Through experiments, analysis, and simulations, we show that Choosy on average differs 2% from the optimal CMMF allocation, and lets jobs achieve their fair share quickly.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"30 1","pages":"365-378"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"195","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465351.2465387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 195

Abstract

Max-Min Fairness is a flexible resource allocation mechanism used in most datacenter schedulers. However, an increasing number of jobs have hard placement constraints, restricting the machines they can run on due to special hardware or software requirements. It is unclear how to define, and achieve, max-min fairness in the presence of such constraints. We propose Constrained Max-Min Fairness (CMMF), an extension to max-min fairness that supports placement constraints, and show that it is the only policy satisfying an important property that incentivizes users to pool resources. Optimally computing CMMF is challenging, but we show that a remarkably simple online scheduler, called Choosy, approximates the optimal scheduler well. Through experiments, analysis, and simulations, we show that Choosy on average differs 2% from the optimal CMMF allocation, and lets jobs achieve their fair share quickly.
有约束的数据中心作业的最大最小公平共享
Max-Min Fairness是大多数数据中心调度器中使用的一种灵活的资源分配机制。然而,越来越多的作业具有硬放置限制,由于特殊的硬件或软件要求,限制了它们可以运行的机器。在这样的约束条件下,如何定义和实现最大最小公平尚不清楚。我们提出了约束最大最小公平性(CMMF),这是支持放置约束的最大最小公平性的扩展,并表明它是唯一满足激励用户集中资源的重要属性的策略。优化计算CMMF具有挑战性,但是我们展示了一个非常简单的在线调度器Choosy,它很好地近似于最优调度器。通过实验、分析和模拟,我们发现Choosy与最优的CMMF分配平均相差2%,并使作业迅速获得公平的份额。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信