Even vertex odd mean labeling of graphs

Q4 Mathematics
R. Vasuki, A. Nagarajan, S. Arockiaraj
{"title":"Even vertex odd mean labeling of graphs","authors":"R. Vasuki, A. Nagarajan, S. Arockiaraj","doi":"10.55937/sut/1394108286","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a new type of labeling known as even vertex odd mean labeling. A graph G with p vertices and q edges is said to have an even vertex odd mean labeling if there exists an injective function f : V (G) → {0, 2, 4, . . . , 2q−2, 2q} such that the induced map f∗ : E(G) → {1, 3, 5, . . . , 2q− 1} defined by f∗(uv) = f(u)+f(v) 2 is a bijection. A graph that admits an even vertex odd mean labeling is called an even vertex odd mean graph. Here we investigate the even vertex odd mean behaviour of some standard graphs. AMS 2010 Mathematics Subject Classification. 05C.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1394108286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper we introduce a new type of labeling known as even vertex odd mean labeling. A graph G with p vertices and q edges is said to have an even vertex odd mean labeling if there exists an injective function f : V (G) → {0, 2, 4, . . . , 2q−2, 2q} such that the induced map f∗ : E(G) → {1, 3, 5, . . . , 2q− 1} defined by f∗(uv) = f(u)+f(v) 2 is a bijection. A graph that admits an even vertex odd mean labeling is called an even vertex odd mean graph. Here we investigate the even vertex odd mean behaviour of some standard graphs. AMS 2010 Mathematics Subject Classification. 05C.
偶点奇均值标记图
本文引入了一种新的标记方法——偶顶点奇均值标记。如果存在一个内射函数f: V (G)→{0,2,4,…,则具有p顶点和q边的图G具有偶顶点奇均值标记。, 2q−2,2q}使得诱导映射f∗:E(G)→{1,3,5,…,由f * (uv) = f(u)+f(v) 2定义的2q−1}是双射。允许有偶点奇均值标记的图称为偶点奇均值图。本文研究了一些标准图的偶顶点奇均值行为。AMS 2010数学学科分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SUT Journal of Mathematics
SUT Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信