Lazy proofs for DPLL(T)-based SMT solvers

Guy Katz, Clark W. Barrett, C. Tinelli, Andrew Reynolds, Liana Hadarean
{"title":"Lazy proofs for DPLL(T)-based SMT solvers","authors":"Guy Katz, Clark W. Barrett, C. Tinelli, Andrew Reynolds, Liana Hadarean","doi":"10.1109/FMCAD.2016.7886666","DOIUrl":null,"url":null,"abstract":"With the integration of SMT solvers into analysis frameworks aimed at ensuring a system's end-to-end correctness, having a high level of confidence in these solvers' results has become crucial. For unsatisfiable queries, a reasonable approach is to have the solver return an independently checkable proof of unsatisfiability. We propose a lazy, extensible and robust method for enhancing DPLL(T)-style SMT solvers with proof-generation capabilities. Our method maintains separate Boolean-level and theory-level proofs, and weaves them together into one coherent artifact. Each theory-specific solver is called upon lazily, a posteriori, to prove precisely those solution steps it is responsible for and that are needed for the final proof. We present an implementation of our technique in the CVC4 SMT solver, capable of producing unsatisfiability proofs for quantifier-free queries involving uninterpreted functions, arrays, bitvectors and combinations thereof. We discuss an evaluation of our tool using industrial benchmarks and benchmarks from the SMT-LIB library, which shows promising results.","PeriodicalId":6479,"journal":{"name":"2016 Formal Methods in Computer-Aided Design (FMCAD)","volume":"13 1","pages":"93-100"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Formal Methods in Computer-Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2016.7886666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

With the integration of SMT solvers into analysis frameworks aimed at ensuring a system's end-to-end correctness, having a high level of confidence in these solvers' results has become crucial. For unsatisfiable queries, a reasonable approach is to have the solver return an independently checkable proof of unsatisfiability. We propose a lazy, extensible and robust method for enhancing DPLL(T)-style SMT solvers with proof-generation capabilities. Our method maintains separate Boolean-level and theory-level proofs, and weaves them together into one coherent artifact. Each theory-specific solver is called upon lazily, a posteriori, to prove precisely those solution steps it is responsible for and that are needed for the final proof. We present an implementation of our technique in the CVC4 SMT solver, capable of producing unsatisfiability proofs for quantifier-free queries involving uninterpreted functions, arrays, bitvectors and combinations thereof. We discuss an evaluation of our tool using industrial benchmarks and benchmarks from the SMT-LIB library, which shows promising results.
基于DPLL(T)的SMT求解器的惰性证明
随着将SMT求解器集成到旨在确保系统端到端正确性的分析框架中,对这些求解器的结果具有高度的信心变得至关重要。对于不可满足的查询,合理的方法是让求解器返回一个独立的可检查的不可满足性证明。我们提出了一种懒惰的、可扩展的和健壮的方法来增强具有证明生成能力的DPLL(T)风格的SMT求解器。我们的方法保持单独的布尔级和理论级证明,并将它们编织成一个连贯的工件。每个特定理论的求解器都被懒散地、事后地要求精确地证明它负责的解步骤,以及最终证明所需要的解步骤。我们在CVC4 SMT求解器中提出了我们的技术的实现,能够为涉及未解释的函数,数组,位向量及其组合的无量化查询产生不满意证明。我们讨论了使用工业基准测试和来自SMT-LIB库的基准测试对我们的工具进行的评估,结果显示了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信