A new radial-angular-R2 transformation for singular integrals on triangular meshes

Li Li, Kun Wang, T. Eibert
{"title":"A new radial-angular-R2 transformation for singular integrals on triangular meshes","authors":"Li Li, Kun Wang, T. Eibert","doi":"10.1109/EUCAP.2014.6901819","DOIUrl":null,"url":null,"abstract":"A new radial-angular-R2 singularity cancellation transformation is proposed. The accuracy of this transformation is not associated with the height of the observation point above the plane of the source domain. When the height tends to zero, the corresponding limit of the transformation turns out to be a new well-behaved transformation within the plane of the source domain, which is also very efficient for accurate singular integral computations. Common Green's functions and its gradients require first and second order transformations for singularity cancellation. However, the proposed second order transformation is also effective for the lower order singular integrals and it is, thus, applicable for all forms of singular integrals in electromagnetic boundary integral equation formulations.","PeriodicalId":22362,"journal":{"name":"The 8th European Conference on Antennas and Propagation (EuCAP 2014)","volume":"53 1","pages":"565-568"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th European Conference on Antennas and Propagation (EuCAP 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUCAP.2014.6901819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A new radial-angular-R2 singularity cancellation transformation is proposed. The accuracy of this transformation is not associated with the height of the observation point above the plane of the source domain. When the height tends to zero, the corresponding limit of the transformation turns out to be a new well-behaved transformation within the plane of the source domain, which is also very efficient for accurate singular integral computations. Common Green's functions and its gradients require first and second order transformations for singularity cancellation. However, the proposed second order transformation is also effective for the lower order singular integrals and it is, thus, applicable for all forms of singular integrals in electromagnetic boundary integral equation formulations.
三角形网格上奇异积分的一种新的径向-角- r2变换
提出了一种新的径向-角- r2奇异抵消变换。这种变换的精度与观测点在源域平面以上的高度无关。当高度趋于零时,相应的变换极限在源域平面内得到一个新的性能良好的变换,对于精确的奇异积分计算也非常有效。普通格林函数及其梯度需要一阶和二阶变换才能消除奇点。然而,所提出的二阶变换对低阶奇异积分也是有效的,因此适用于电磁边界积分方程中各种形式的奇异积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信