ARIMA and RNN for Selection Sequences Prediction in Iowa Gambling Task

Yuemeng Guo, Sensen Song, Hanbo Xie, Xiaoxue Gao, Jianlei Zhang
{"title":"ARIMA and RNN for Selection Sequences Prediction in Iowa Gambling Task","authors":"Yuemeng Guo, Sensen Song, Hanbo Xie, Xiaoxue Gao, Jianlei Zhang","doi":"10.1109/AISP53593.2022.9760558","DOIUrl":null,"url":null,"abstract":"The Iowa Gambling Task (IGT) has become the classical experiment with many studies of cognitive decision models. In this work, we explore whether Autoregressive Integrated Moving Average (ARIMA) models and Recurrent Neural Networks (RNN) in time series analysis can be applied to extract the decision features of IGT participants. The simulation results of IGT show that both models can capture the selection characteristics of participants and make subsequent selection prediction accordingly. Furthermore, the RNN containing selection features with different preferences can represent the corresponding participants to participate in the IGT experiment.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"254 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Iowa Gambling Task (IGT) has become the classical experiment with many studies of cognitive decision models. In this work, we explore whether Autoregressive Integrated Moving Average (ARIMA) models and Recurrent Neural Networks (RNN) in time series analysis can be applied to extract the decision features of IGT participants. The simulation results of IGT show that both models can capture the selection characteristics of participants and make subsequent selection prediction accordingly. Furthermore, the RNN containing selection features with different preferences can represent the corresponding participants to participate in the IGT experiment.
基于ARIMA和RNN的爱荷华赌博任务选择序列预测
爱荷华赌博任务(Iowa Gambling Task, IGT)已成为众多认知决策模型研究的经典实验。在这项工作中,我们探讨了时间序列分析中的自回归综合移动平均(ARIMA)模型和递归神经网络(RNN)是否可以应用于提取IGT参与者的决策特征。IGT的仿真结果表明,两种模型都能捕捉到参与者的选择特征,并据此进行后续的选择预测。此外,包含不同偏好选择特征的RNN可以代表相应的参与者参与IGT实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信