{"title":"Coherent Combining and Long Coherent Integration for BOC Signal Acquisition under Strong Interference","authors":"Chun Yang, A. Soloviev, A. Vadlamani, J. C. Ha","doi":"10.33012/navi.508","DOIUrl":null,"url":null,"abstract":"A coherent combining and long coherent integration (CCLCI) scheme is pre - sented for standalone direct acquisition of binary offset carrier (BOC) signals under strong radio frequency interference (RFI). To mitigate the ambiguity of BOC signals, a split-spectrum method extracts the upper and lower sidebands of a BOC signal, treats them separately as two binary phase shift keying (BPSK) signals, and finally combines the results to recover the loss due to splitting. The CCLCI scheme burns through strong interference by building up the desired weak signal while averaging out noise and interference. It exploits all information available (L1 and L2, upper and lower sidebands, odd and even chips, and I-and Q-components) by applying coherent combining across signal components and long coherent integration over time, followed by noncoherent accumulation if necessary. Issues and enabling techniques are described. The results of an embed - ded implementation in demonstration with a GPS RF simulator are analyzed.","PeriodicalId":56075,"journal":{"name":"Navigation-Journal of the Institute of Navigation","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Navigation-Journal of the Institute of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33012/navi.508","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 3
Abstract
A coherent combining and long coherent integration (CCLCI) scheme is pre - sented for standalone direct acquisition of binary offset carrier (BOC) signals under strong radio frequency interference (RFI). To mitigate the ambiguity of BOC signals, a split-spectrum method extracts the upper and lower sidebands of a BOC signal, treats them separately as two binary phase shift keying (BPSK) signals, and finally combines the results to recover the loss due to splitting. The CCLCI scheme burns through strong interference by building up the desired weak signal while averaging out noise and interference. It exploits all information available (L1 and L2, upper and lower sidebands, odd and even chips, and I-and Q-components) by applying coherent combining across signal components and long coherent integration over time, followed by noncoherent accumulation if necessary. Issues and enabling techniques are described. The results of an embed - ded implementation in demonstration with a GPS RF simulator are analyzed.
期刊介绍:
NAVIGATION is a quarterly journal published by The Institute of Navigation. The journal publishes original, peer-reviewed articles on all areas related to the science, engineering and art of Positioning, Navigation and Timing (PNT) covering land (including indoor use), sea, air and space applications. PNT technologies of interest encompass navigation satellite systems (both global and regional), inertial navigation, electro-optical systems including LiDAR and imaging sensors, and radio-frequency ranging and timing systems, including those using signals of opportunity from communication systems and other non-traditional PNT sources. Articles about PNT algorithms and methods, such as for error characterization and mitigation, integrity analysis, PNT signal processing and multi-sensor integration, are welcome. The journal also accepts articles on non-traditional applications of PNT systems, including remote sensing of the Earth’s surface or atmosphere, as well as selected historical and survey articles.