Passive-Tuned Mass Dampers for the Pointing Accuracy Mitigation of VLBI Earth-Based Antennae Subject to Aerodynamic Gust

IF 12.2 1区 工程技术 Q1 MECHANICS
Victor E. L. Gasparetto, Jackson Reid, M. ElSayed
{"title":"Passive-Tuned Mass Dampers for the Pointing Accuracy Mitigation of VLBI Earth-Based Antennae Subject to Aerodynamic Gust","authors":"Victor E. L. Gasparetto, Jackson Reid, M. ElSayed","doi":"10.3390/applmech4030042","DOIUrl":null,"url":null,"abstract":"This paper proposes an optimization procedure to achieve the best configuration of multiple degrees of freedom Tuned Mass Dampers (TMDs) to mitigate the pointing error of Very-Long-Baseline Interferometry (VLBI) Earth-based radio antennae operating under aerodynamic gust conditions. In order to determine the optimum sets of TMDs, a Multi-Objective design optimization employing a genetic algorithm is implemented. A case study is presented where fourteen operational scenarios of wind gust are considered, employing two models of atmospheric disturbances, namely the Power Spectral Density (PSD) function with a statistical profile presented by the Davenport Spectrum (DS) and a Tuned Discrete Gust (TDG) modeled as a one-minus cosine signal. It is found that the optimal configurations of TMDs are capable of reducing the pointing error of the antenna by an average of 66% and 50% for the PSD and TDG gust excitation scenarios, respectively, with a mass inclusion of 1% of the total mass of the antenna structure. The optimal TMD parameters determined herein can be utilized for design and field implementation in antenna systems, such that their structural efficiency can be enhanced for radio astronomy applications.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"5 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mechanics Reviews","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/applmech4030042","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an optimization procedure to achieve the best configuration of multiple degrees of freedom Tuned Mass Dampers (TMDs) to mitigate the pointing error of Very-Long-Baseline Interferometry (VLBI) Earth-based radio antennae operating under aerodynamic gust conditions. In order to determine the optimum sets of TMDs, a Multi-Objective design optimization employing a genetic algorithm is implemented. A case study is presented where fourteen operational scenarios of wind gust are considered, employing two models of atmospheric disturbances, namely the Power Spectral Density (PSD) function with a statistical profile presented by the Davenport Spectrum (DS) and a Tuned Discrete Gust (TDG) modeled as a one-minus cosine signal. It is found that the optimal configurations of TMDs are capable of reducing the pointing error of the antenna by an average of 66% and 50% for the PSD and TDG gust excitation scenarios, respectively, with a mass inclusion of 1% of the total mass of the antenna structure. The optimal TMD parameters determined herein can be utilized for design and field implementation in antenna systems, such that their structural efficiency can be enhanced for radio astronomy applications.
气动阵风作用下VLBI地基天线指向精度降低的被动调谐质量阻尼器
本文提出了一种优化方法,以实现多自由度调谐质量阻尼器(TMDs)的最佳配置,以减轻在气动阵风条件下工作的甚长基线干涉(VLBI)地基无线电天线的指向误差。为了确定tmd的最优集合,采用遗传算法实现了多目标设计优化。本文提出了一个案例研究,其中考虑了14种阵风的操作场景,采用了两种大气扰动模型,即具有达文波特谱(DS)统计剖面的功率谱密度(PSD)函数和建模为1 -余弦信号的调谐离散阵风(TDG)。研究发现,在PSD和TDG阵风激励情况下,tmd的优化配置能够使天线的指向误差平均分别降低66%和50%,其质量包含量为天线结构总质量的1%。本文确定的最佳TMD参数可用于天线系统的设计和现场实现,从而提高射电天文应用中天线系统的结构效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.20
自引率
0.70%
发文量
13
审稿时长
>12 weeks
期刊介绍: Applied Mechanics Reviews (AMR) is an international review journal that serves as a premier venue for dissemination of material across all subdisciplines of applied mechanics and engineering science, including fluid and solid mechanics, heat transfer, dynamics and vibration, and applications.AMR provides an archival repository for state-of-the-art and retrospective survey articles and reviews of research areas and curricular developments. The journal invites commentary on research and education policy in different countries. The journal also invites original tutorial and educational material in applied mechanics targeting non-specialist audiences, including undergraduate and K-12 students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信