{"title":"Bio-inspired nanomaterials and their applications as antimicrobial agents","authors":"S. Zinjarde","doi":"10.4103/2229-5186.94314","DOIUrl":null,"url":null,"abstract":"In the recent decades, the interdisciplinary field of nanotechnology has expanded extensively. A variety of nanoparticles (NPs) have been used for a number of specialized applications. In this era facing a major problem of microorganisms developing antibiotic resistance, NPs are a lucrative option. Most physical and chemical processes of NP synthesis are associated with drawbacks and bio-inspired NPs have now become popular. This review summarizes the recent developments on the biosynthesis, characterization, and applications of NPs with particular reference to their use as antimicrobial agents. Reviewed here is the synthesis of gold and silver NPs (AgNPs) by a variety of biological forms and biomolecules as well as their effectiveness toward different fungal and bacterial pathogens. The use of gold NPs (bio-inspired by plants, fungi, and bacteria) and AgNPs, synthesized by carbohydrates (of plant, animal, and microbial origin), plant parts (bark, callus, leaves, peels, and tubers), fungi, and bacteria have been highlighted. In addition, the use of zinc oxide NPs (although not bio-inspired) as novel antimicrobial agents have also been discussed.","PeriodicalId":10187,"journal":{"name":"Chronicles of Young Scientists","volume":"11 1","pages":"74"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chronicles of Young Scientists","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2229-5186.94314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60
Abstract
In the recent decades, the interdisciplinary field of nanotechnology has expanded extensively. A variety of nanoparticles (NPs) have been used for a number of specialized applications. In this era facing a major problem of microorganisms developing antibiotic resistance, NPs are a lucrative option. Most physical and chemical processes of NP synthesis are associated with drawbacks and bio-inspired NPs have now become popular. This review summarizes the recent developments on the biosynthesis, characterization, and applications of NPs with particular reference to their use as antimicrobial agents. Reviewed here is the synthesis of gold and silver NPs (AgNPs) by a variety of biological forms and biomolecules as well as their effectiveness toward different fungal and bacterial pathogens. The use of gold NPs (bio-inspired by plants, fungi, and bacteria) and AgNPs, synthesized by carbohydrates (of plant, animal, and microbial origin), plant parts (bark, callus, leaves, peels, and tubers), fungi, and bacteria have been highlighted. In addition, the use of zinc oxide NPs (although not bio-inspired) as novel antimicrobial agents have also been discussed.