Anita Ptiček Siročić, S. Kovač, D. Stanko, Iva Pejak
{"title":"Dependence\nof concentration of radon on environmental parameters","authors":"Anita Ptiček Siročić, S. Kovač, D. Stanko, Iva Pejak","doi":"10.37023/ee.8.1-2.3","DOIUrl":null,"url":null,"abstract":"Radon (222Ra) is a colourless and odourless natural radioactive element in gaseous state. The concentration of radon in the air is usually low, but it can be very high inside of a living space, because of its possibility to penetrate from a foundation soil over a basement into a building itself. People are daily exposed to a certain concentration of radon that is found in soil, water, air and food. This paper shows a correlation analysis of environmental parameters by using the model of multiple regressions. It defines certain statistical relations between environmental parameters such as temperature, humidity, and atmospheric pressure with measured values of radon concentrations. Measurements were carried out at several locations in various residential buildings in north-western Croatia. The results indicated that individual environmental parameters and radon concentration at individual locations were connected. For example, at one location the concentration of radon was decreasing if atmospheric pressure was increasing. Measurements at another location indicated that the concentration of radon was increasing if air humidity was increasing. Due to large number of different parameters affecting the concentration of radon in residential buildings, a satisfactory statistical model to predict the concentration of radon with environmental parameters is not easy to achieve since it was observed variability of radon concentrations with environmental parameters within different local sites. It is necessary to consider a longer period to determine with certainty a mathematical model that would give the most accurate prediction of radon concentration dependence on environmental parameters which can affect human health and quality of life.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental & Engineering Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.37023/ee.8.1-2.3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
Radon (222Ra) is a colourless and odourless natural radioactive element in gaseous state. The concentration of radon in the air is usually low, but it can be very high inside of a living space, because of its possibility to penetrate from a foundation soil over a basement into a building itself. People are daily exposed to a certain concentration of radon that is found in soil, water, air and food. This paper shows a correlation analysis of environmental parameters by using the model of multiple regressions. It defines certain statistical relations between environmental parameters such as temperature, humidity, and atmospheric pressure with measured values of radon concentrations. Measurements were carried out at several locations in various residential buildings in north-western Croatia. The results indicated that individual environmental parameters and radon concentration at individual locations were connected. For example, at one location the concentration of radon was decreasing if atmospheric pressure was increasing. Measurements at another location indicated that the concentration of radon was increasing if air humidity was increasing. Due to large number of different parameters affecting the concentration of radon in residential buildings, a satisfactory statistical model to predict the concentration of radon with environmental parameters is not easy to achieve since it was observed variability of radon concentrations with environmental parameters within different local sites. It is necessary to consider a longer period to determine with certainty a mathematical model that would give the most accurate prediction of radon concentration dependence on environmental parameters which can affect human health and quality of life.
期刊介绍:
The Environmental & Engineering Geoscience Journal publishes peer-reviewed manuscripts that address issues relating to the interaction of people with hydrologic and geologic systems. Theoretical and applied contributions are appropriate, and the primary criteria for acceptance are scientific and technical merit.