Higher dimensional topology and generalized Hopf bifurcations for discrete dynamical systems

H. Barge, J. Sanjurjo
{"title":"Higher dimensional topology and generalized Hopf bifurcations for discrete dynamical systems","authors":"H. Barge, J. Sanjurjo","doi":"10.3934/dcds.2021204","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper we study generalized Poincaré-Andronov-Hopf bifurcations of discrete dynamical systems. We prove a general result for attractors in <inline-formula><tex-math id=\"M1\">\\begin{document}$ n $\\end{document}</tex-math></inline-formula>-dimensional manifolds satisfying some suitable conditions. This result allows us to obtain sharper Hopf bifurcation theorems for fixed points in the general case and other attractors in low dimensional manifolds. Topological techniques based on the notion of concentricity of manifolds play a substantial role in the paper.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we study generalized Poincaré-Andronov-Hopf bifurcations of discrete dynamical systems. We prove a general result for attractors in \begin{document}$ n $\end{document}-dimensional manifolds satisfying some suitable conditions. This result allows us to obtain sharper Hopf bifurcation theorems for fixed points in the general case and other attractors in low dimensional manifolds. Topological techniques based on the notion of concentricity of manifolds play a substantial role in the paper.

离散动力系统的高维拓扑和广义Hopf分岔
In this paper we study generalized Poincaré-Andronov-Hopf bifurcations of discrete dynamical systems. We prove a general result for attractors in \begin{document}$ n $\end{document}-dimensional manifolds satisfying some suitable conditions. This result allows us to obtain sharper Hopf bifurcation theorems for fixed points in the general case and other attractors in low dimensional manifolds. Topological techniques based on the notion of concentricity of manifolds play a substantial role in the paper.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信