{"title":"A novel differential evolution algorithm for economic power dispatch problem","authors":"Pooja","doi":"10.3934/naco.2021042","DOIUrl":null,"url":null,"abstract":"In power systems, Economic Power dispatch Problem (EPP) is an influential optimization problem which is a highly non-convex and non-linear optimization problem. In the current study, a novel version of Differential Evolution (NDE) is used to solve this particular problem. NDE algorithm enhances local and global search capability along with efficient utilization of time and space by making use of two elite features: selfadaptive control parameter and single population structure. The combined effect of these concepts improves the performance of Differential Evolution (DE) without compromising on quality of the solution and balances the exploitation and exploration capabilities of DE. The efficiency of NDE is validated by evaluating on three benchmark cases of the power system problem having constraints such as power balance and power generation along with nonsmooth cost function and is compared with other optimization algorithms. The Numerical outcomes uncovered that NDE performed well for all the benchmark cases and maintained a trade-off between convergence rate and efficiency.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"54 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
In power systems, Economic Power dispatch Problem (EPP) is an influential optimization problem which is a highly non-convex and non-linear optimization problem. In the current study, a novel version of Differential Evolution (NDE) is used to solve this particular problem. NDE algorithm enhances local and global search capability along with efficient utilization of time and space by making use of two elite features: selfadaptive control parameter and single population structure. The combined effect of these concepts improves the performance of Differential Evolution (DE) without compromising on quality of the solution and balances the exploitation and exploration capabilities of DE. The efficiency of NDE is validated by evaluating on three benchmark cases of the power system problem having constraints such as power balance and power generation along with nonsmooth cost function and is compared with other optimization algorithms. The Numerical outcomes uncovered that NDE performed well for all the benchmark cases and maintained a trade-off between convergence rate and efficiency.
期刊介绍:
Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.