S. Dighe, S. Vangal, Paolo A. Aseron, Shasi Kumar, Tiju Jacob, K. Bowman, J. Howard, J. Tschanz, V. Erraguntla, N. Borkar, V. De, S. Borkar
{"title":"Within-die variation-aware dynamic-voltage-frequency scaling core mapping and thread hopping for an 80-core processor","authors":"S. Dighe, S. Vangal, Paolo A. Aseron, Shasi Kumar, Tiju Jacob, K. Bowman, J. Howard, J. Tschanz, V. Erraguntla, N. Borkar, V. De, S. Borkar","doi":"10.1109/ISSCC.2010.5433997","DOIUrl":null,"url":null,"abstract":"Many-core processors with on-die network-on-chip (NoC) interconnects have emerged as viable architectures for Single-Instruction/Multiple-Data (SIMD) vector applications and parallel workloads, and have been implemented in 65nm CMOS with Dynamic Voltage-Frequency Scaling (DVFS). Chips with Single-Voltage/Single-Frequency (SVSF) for all cores running homogeneous threads as well as Multiple-Voltage/Multiple-Frequency (MVMF), running heterogeneous applications and using independent V/F control for each core, have been reported. Combination of DVFS with dynamic core-count scaling (or DVFCS) has been proposed to further improve performance & energy efficiency across varying workloads. With technology scaling, both leakage power and core-to-core variations in frequency (Fmax) & leakage due to within-die device parameter variations have become significant, thus creating the need for per-core power gating and variation-aware DVFCS. Recently, variation-aware core mapping has been investigated using high level architectural simulations and statistical variation models.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":"36 1","pages":"174-175"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2010.5433997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62
Abstract
Many-core processors with on-die network-on-chip (NoC) interconnects have emerged as viable architectures for Single-Instruction/Multiple-Data (SIMD) vector applications and parallel workloads, and have been implemented in 65nm CMOS with Dynamic Voltage-Frequency Scaling (DVFS). Chips with Single-Voltage/Single-Frequency (SVSF) for all cores running homogeneous threads as well as Multiple-Voltage/Multiple-Frequency (MVMF), running heterogeneous applications and using independent V/F control for each core, have been reported. Combination of DVFS with dynamic core-count scaling (or DVFCS) has been proposed to further improve performance & energy efficiency across varying workloads. With technology scaling, both leakage power and core-to-core variations in frequency (Fmax) & leakage due to within-die device parameter variations have become significant, thus creating the need for per-core power gating and variation-aware DVFCS. Recently, variation-aware core mapping has been investigated using high level architectural simulations and statistical variation models.