A Batched Expensive Multiobjective Optimization Based on Constrained Decomposition with Grids

Feng Zhang, Xinye Cai, Zhun Fan
{"title":"A Batched Expensive Multiobjective Optimization Based on Constrained Decomposition with Grids","authors":"Feng Zhang, Xinye Cai, Zhun Fan","doi":"10.1109/SSCI44817.2019.9002765","DOIUrl":null,"url":null,"abstract":"A batched constrained decomposition with grids (BCDG) is proposed for expensive multiobjective optimization problems. In this algorithm, each objective function is approximated by a Gaussian process model and CDG-MOEA is used to optimize a candidate population. Finally, we use Hypervolume Indicator to select some better points from the candidate population for evaluation. In the process of CDG-MOEA optimizing candidate solutions and using Hypervolume Indicator to select candidate solutions for evaluation, we use Gaussian process lower confidence bound criteria to consider the uncertainty of Gaussian process prediction. Experimental study on some special test problems shows that BCDG can effectively solve some special expensive multiobjective optimization problems.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"2 1","pages":"2081-2087"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A batched constrained decomposition with grids (BCDG) is proposed for expensive multiobjective optimization problems. In this algorithm, each objective function is approximated by a Gaussian process model and CDG-MOEA is used to optimize a candidate population. Finally, we use Hypervolume Indicator to select some better points from the candidate population for evaluation. In the process of CDG-MOEA optimizing candidate solutions and using Hypervolume Indicator to select candidate solutions for evaluation, we use Gaussian process lower confidence bound criteria to consider the uncertainty of Gaussian process prediction. Experimental study on some special test problems shows that BCDG can effectively solve some special expensive multiobjective optimization problems.
基于网格约束分解的批处理昂贵多目标优化
针对昂贵的多目标优化问题,提出了一种带网格的批量约束分解方法。该算法采用高斯过程模型对目标函数进行近似,利用CDG-MOEA算法对候选种群进行优化。最后,我们使用Hypervolume Indicator从候选总体中选择一些较好的点进行评估。在CDG-MOEA优化候选解并利用Hypervolume Indicator选择候选解进行评价的过程中,我们采用高斯过程下置信度界准则来考虑高斯过程预测的不确定性。对一些特殊测试问题的实验研究表明,BCDG可以有效地解决一些特殊的昂贵的多目标优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信