{"title":"Application of the Surveillance Device in the Control System for an Electromechanical System with Distributed Parameters in its Mechanical Part","authors":"A. P. Korneev, G. S. Lenevsky, Yi-Ning Niu","doi":"10.21122/1029-7448-2023-66-4-344-353","DOIUrl":null,"url":null,"abstract":"A system with distributed parameters in its mechanical part is considered. Examples of such a system are given. The reason for taking into account the distribution of parameters in such systems is indicated. Existing methods of research and calculation of control systems are considered. The boundary value problem for a system with distributed parameters is presented. The use of a surveillance device as one of the ways to implement a control system for a system with distributed parameters is proposed. The necessity of using a closed control system and the complexity of its implementation are demonstrated. A block diagram of the control method being developed is presented. Also, transfer functions describing a system with distributed parameters are given; the mathematical calculation of the surveillance device is given as well. A method for implementing a closed control system along an intermediate coordinate for an electromechanical system with distributed parameters in the mechanical part using a surveillance device has been obtained. The surveillance device is in feedback and restores the output speed without measuring it directly. A general view of the transfer function is determined for the surveillance device. The advantages and disadvantages of the transfer function of the surveillance device and a graphical view of a simple implementation of the surveillance device with a dedicated auxiliary device in feedback are presented. An approximation that is used for systems with distributed parameters is described. Approximation conclusions are obtained. According to the parameters of the experimental installation, approximated transfer functions of the mechanical part of the system with distributed parameters without a surveillance device and with a surveillance device are obtained. The LACH of the mechanical part of the system with distributed parameters with a surveillance device and without a surveillance device for an experimental installation for the simplest case is presented, as well as a method for implementing a closed control system along an intermediate coordinate for an electromechanical system with distributed parameters in the mechanical part using a surveillance device.","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2023-66-4-344-353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
A system with distributed parameters in its mechanical part is considered. Examples of such a system are given. The reason for taking into account the distribution of parameters in such systems is indicated. Existing methods of research and calculation of control systems are considered. The boundary value problem for a system with distributed parameters is presented. The use of a surveillance device as one of the ways to implement a control system for a system with distributed parameters is proposed. The necessity of using a closed control system and the complexity of its implementation are demonstrated. A block diagram of the control method being developed is presented. Also, transfer functions describing a system with distributed parameters are given; the mathematical calculation of the surveillance device is given as well. A method for implementing a closed control system along an intermediate coordinate for an electromechanical system with distributed parameters in the mechanical part using a surveillance device has been obtained. The surveillance device is in feedback and restores the output speed without measuring it directly. A general view of the transfer function is determined for the surveillance device. The advantages and disadvantages of the transfer function of the surveillance device and a graphical view of a simple implementation of the surveillance device with a dedicated auxiliary device in feedback are presented. An approximation that is used for systems with distributed parameters is described. Approximation conclusions are obtained. According to the parameters of the experimental installation, approximated transfer functions of the mechanical part of the system with distributed parameters without a surveillance device and with a surveillance device are obtained. The LACH of the mechanical part of the system with distributed parameters with a surveillance device and without a surveillance device for an experimental installation for the simplest case is presented, as well as a method for implementing a closed control system along an intermediate coordinate for an electromechanical system with distributed parameters in the mechanical part using a surveillance device.
期刊介绍:
The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.