{"title":"Modelling catalyst regeneration in an industrial FCC unit","authors":"K. Dagde, Y. Puyate","doi":"10.5251/AJSIR.2013.4.3.294.305","DOIUrl":null,"url":null,"abstract":"Predictive models for process parameters during regeneration of spent catalyst in an industrial fluid catalytic cracking (FCC) unit are presented. The models adopt a twophase theory where the dense region of the regenerator is divided into a bubble-phase and an emulsion-phase. The bubble-phase is modelled as a plug flow reactor, while the emulsion-phase is modelled as a continuous stirred tank reactor (CSTR). Profiles for regenerator-temperature, quantity of coke burnt, and flue gas composition, at different operating conditions are also presented. Model-predictions are compared with plant data and good agreement is obtained. Simulation results indicate that inlet-air velocity and catalyst-bed height have significant influence on the performance of the rege nerator. The model-estimated optimum operating conditions of the regenerator are regeneratortemperature of about 1000 K, inlet-air velocity of about 13.5 m/s, and catalyst-bed height of 13 m.","PeriodicalId":7661,"journal":{"name":"American Journal of Scientific and Industrial Research","volume":"17 1","pages":"294-305"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Scientific and Industrial Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5251/AJSIR.2013.4.3.294.305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Predictive models for process parameters during regeneration of spent catalyst in an industrial fluid catalytic cracking (FCC) unit are presented. The models adopt a twophase theory where the dense region of the regenerator is divided into a bubble-phase and an emulsion-phase. The bubble-phase is modelled as a plug flow reactor, while the emulsion-phase is modelled as a continuous stirred tank reactor (CSTR). Profiles for regenerator-temperature, quantity of coke burnt, and flue gas composition, at different operating conditions are also presented. Model-predictions are compared with plant data and good agreement is obtained. Simulation results indicate that inlet-air velocity and catalyst-bed height have significant influence on the performance of the rege nerator. The model-estimated optimum operating conditions of the regenerator are regeneratortemperature of about 1000 K, inlet-air velocity of about 13.5 m/s, and catalyst-bed height of 13 m.