A Model Predictive Control Approach for Vision-Based Object Grasping via Mobile Manipulator

M. Logothetis, G. Karras, Shahab Heshmati-alamdari, Panagiotis Vlantis, K. Kyriakopoulos
{"title":"A Model Predictive Control Approach for Vision-Based Object Grasping via Mobile Manipulator","authors":"M. Logothetis, G. Karras, Shahab Heshmati-alamdari, Panagiotis Vlantis, K. Kyriakopoulos","doi":"10.1109/IROS.2018.8593759","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a vision-based object grasping and motion control architecture for a mobile manipulator system. The optimal grasping areas of the object are estimated using the partial point cloud acquired from an onboard RGB-D sensor system. The reach-to-grasp motion of the mobile manipulator is handled via a Nonlinear Model Predictive Control scheme. The controller is formulated accordingly in order to allow the system to operate in a constrained workspace with static obstacles. The goal of the proposed scheme is to guide the robot's end-effector towards the optimal grasping regions with guaranteed input and state constraints such as occlusion and obstacle avoidance, workspace boundaries and field of view constraints. The performance of the proposed strategy is experimentally verified using an 8 Degrees of Freedom KUKA Youbot in different reach-to-grasp scenarios.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"13 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8593759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper presents the design of a vision-based object grasping and motion control architecture for a mobile manipulator system. The optimal grasping areas of the object are estimated using the partial point cloud acquired from an onboard RGB-D sensor system. The reach-to-grasp motion of the mobile manipulator is handled via a Nonlinear Model Predictive Control scheme. The controller is formulated accordingly in order to allow the system to operate in a constrained workspace with static obstacles. The goal of the proposed scheme is to guide the robot's end-effector towards the optimal grasping regions with guaranteed input and state constraints such as occlusion and obstacle avoidance, workspace boundaries and field of view constraints. The performance of the proposed strategy is experimentally verified using an 8 Degrees of Freedom KUKA Youbot in different reach-to-grasp scenarios.
一种基于视觉的移动机械手抓取物体的模型预测控制方法
提出了一种基于视觉的移动机械手抓取与运动控制体系结构设计。利用机载RGB-D传感器系统获取的部分点云估计物体的最佳抓取区域。采用非线性模型预测控制方法对移动机械臂的够握运动进行控制。为了使系统在具有静态障碍物的受限工作空间中运行,相应地制定了控制器。该方案的目标是在保证输入和状态约束(如遮挡和避障、工作空间边界和视场约束)的情况下,引导机器人末端执行器向最优抓取区域移动。利用8自由度的KUKA Youbot机器人在不同的伸手抓握场景中对所提出策略的性能进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信