Mesh duality and Legendre duality

S. Chynoweth, M. J. Sewell, D. Jones
{"title":"Mesh duality and Legendre duality","authors":"S. Chynoweth, M. J. Sewell, D. Jones","doi":"10.1098/rspa.1990.0039","DOIUrl":null,"url":null,"abstract":"We describe a sense in which mesh duality is equivalent to Legendre duality. That is, a general pair of meshes, which satisfy a definition of duality for meshes, are shown to be the projection of a pair of piecewise linear functions that are dual to each other in the sense of a Legendre dual transformation. In applications the latter functions can be a tangent plane approximation to a smoother function, and a chordal plane approximation to its Legendre dual. Convex examples include one from meteorology, and also the relation between the Delaunay mesh and the Voronoi tessellation. The latter are shown to be the projections of tangent plane and chordal approximations to the same paraboloid.","PeriodicalId":20605,"journal":{"name":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","volume":"13 1","pages":"351 - 377"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.1990.0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We describe a sense in which mesh duality is equivalent to Legendre duality. That is, a general pair of meshes, which satisfy a definition of duality for meshes, are shown to be the projection of a pair of piecewise linear functions that are dual to each other in the sense of a Legendre dual transformation. In applications the latter functions can be a tangent plane approximation to a smoother function, and a chordal plane approximation to its Legendre dual. Convex examples include one from meteorology, and also the relation between the Delaunay mesh and the Voronoi tessellation. The latter are shown to be the projections of tangent plane and chordal approximations to the same paraboloid.
网格二象性和勒让德二象性
我们描述了一种网格二象性等价于勒让德二象性的意义。也就是说,满足网格对偶定义的一对一般网格,被证明是一对分段线性函数的投影,它们在勒让德对偶变换的意义上是对偶的。在实际应用中,后一种函数可以是光滑函数的切平面近似,也可以是其勒让德对偶的弦平面近似。凸的例子包括气象学中的一个,以及Delaunay网格和Voronoi镶嵌之间的关系。后者被证明是同一抛物面的切平面投影和弦线近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信