Counting points on the Fricke-Macbeath curve over finite fields

IF 0.3 4区 数学 Q4 MATHEMATICS
Jaap Top, Carlo Verschoor
{"title":"Counting points on the Fricke-Macbeath curve over finite fields","authors":"Jaap Top, Carlo Verschoor","doi":"10.5802/JTNB.1019","DOIUrl":null,"url":null,"abstract":"The Fricke-Macbeath curve is a smooth projective algebraic curve of genus 7 with automorphism group PSL₂(픽₈). We recall two models of it (introduced, respectively, by Maxim Hendriks and by Bradley Brock) defined over ℚ, and we establish an explicit isomorphism defined over ℚ( −7 ) between these models. Moreover, we decompose up to isogeny over ℚ the jacobian of one of these models. As a consequence we obtain a simple formula for the number of points over 픽q on (the reduction of) this model, in terms of the elliptic curve with equation y² = x³ + x² − 114x − 127. Moreover, twists by elements of PSL₂(픽₈) of the curve over finite fields are described. The curve leads to a number of new records as maintained on manYPoints of curves of genus 7 with many rational points over finite fields.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":"8 1","pages":"117-129"},"PeriodicalIF":0.3000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/JTNB.1019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

The Fricke-Macbeath curve is a smooth projective algebraic curve of genus 7 with automorphism group PSL₂(픽₈). We recall two models of it (introduced, respectively, by Maxim Hendriks and by Bradley Brock) defined over ℚ, and we establish an explicit isomorphism defined over ℚ( −7 ) between these models. Moreover, we decompose up to isogeny over ℚ the jacobian of one of these models. As a consequence we obtain a simple formula for the number of points over 픽q on (the reduction of) this model, in terms of the elliptic curve with equation y² = x³ + x² − 114x − 127. Moreover, twists by elements of PSL₂(픽₈) of the curve over finite fields are described. The curve leads to a number of new records as maintained on manYPoints of curves of genus 7 with many rational points over finite fields.
有限域上的Fricke-Macbeath曲线上的点计数
Fricke-Macbeath曲线是一条光滑的7属投影代数曲线,具有自同构群PSL₂(₈)。我们回顾了定义在π上的两个模型(分别由Maxim Hendriks和Bradley Brock引入),并在这些模型之间建立了定义在π(−7)上的显式同构。此外,我们将其中一个模型的雅可比矩阵分解为在π上的等基因。因此,我们得到了一个简单的公式,表示在这个模型上的(约简)点的个数,用方程y²= x³+ x²−114x−127的椭圆曲线表示。此外,还描述了该曲线在有限域上的PSL₂(₈)元素的扭曲。该曲线在有限域上具有许多有理点的7属曲线的许多点上得到了许多新的记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信