Rasool Nodeh Farahani, G. Abdollahzadeh, Alireza Mirza Goltabar Roshan
{"title":"The Modified Energy-based Method for Seismic Evaluation of Structural Systems with Different Hardening Ratios and Deterioration Hysteresis Models","authors":"Rasool Nodeh Farahani, G. Abdollahzadeh, Alireza Mirza Goltabar Roshan","doi":"10.3311/ppci.21359","DOIUrl":null,"url":null,"abstract":"Prediction of target displacement in structural systems plays a significant role in performance-based design and rehabilitation of structures. In this study, the γ factor for different hardening ratios, including 1, 2, 3, 5, 7.5, 10, and 15 percentages, stiffness-strength-deterioration models, and soil type classes is determined to modify the energy balance equation in performance-based plastic design (PBPD). Statistical results indicate that the effect of the hardening ratio, deterioration, and soil type class on the capacity curve is considerable. Therefore, a simple equation based on the period of the vibration and ductility is suggested to estimate the γ factor in different structural systems. Moreover, four 1-, 3-, 7-, and 12-story moment steel structures with various hardening ratios in the material are designed to validate the proposed method. The suggested values for the γ factor show exact results compared to collected displacements from time history analysis, while the error in the previous work was considerable. Statistical results showed that the mean error in the previous method in estimating target displacement for 1-, 3-. 7-, and 12-story structures is about 15%, 20%, 20%, and 32%, respectively. Conversely, the mean error in this study for estimating target displacement of 1-, 3-. 7-, and 12-story structures is about 10%, 7%, 6%, and 15%, respectively. Finally, the proposed method is examined on the empirical reinforced concrete (RC) bridge pier simulated numerically with fiber-based modeling. Similarly, the suggested equation estimates the target displacement appropriately for the concrete model compared to achieved displacements from nonlinear dynamic analysis.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.21359","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Prediction of target displacement in structural systems plays a significant role in performance-based design and rehabilitation of structures. In this study, the γ factor for different hardening ratios, including 1, 2, 3, 5, 7.5, 10, and 15 percentages, stiffness-strength-deterioration models, and soil type classes is determined to modify the energy balance equation in performance-based plastic design (PBPD). Statistical results indicate that the effect of the hardening ratio, deterioration, and soil type class on the capacity curve is considerable. Therefore, a simple equation based on the period of the vibration and ductility is suggested to estimate the γ factor in different structural systems. Moreover, four 1-, 3-, 7-, and 12-story moment steel structures with various hardening ratios in the material are designed to validate the proposed method. The suggested values for the γ factor show exact results compared to collected displacements from time history analysis, while the error in the previous work was considerable. Statistical results showed that the mean error in the previous method in estimating target displacement for 1-, 3-. 7-, and 12-story structures is about 15%, 20%, 20%, and 32%, respectively. Conversely, the mean error in this study for estimating target displacement of 1-, 3-. 7-, and 12-story structures is about 10%, 7%, 6%, and 15%, respectively. Finally, the proposed method is examined on the empirical reinforced concrete (RC) bridge pier simulated numerically with fiber-based modeling. Similarly, the suggested equation estimates the target displacement appropriately for the concrete model compared to achieved displacements from nonlinear dynamic analysis.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.