Non-immersion theorems for lens spaces. II

Teiichi Kobayashi
{"title":"Non-immersion theorems for lens spaces. II","authors":"Teiichi Kobayashi","doi":"10.32917/HMJ/1206138653","DOIUrl":null,"url":null,"abstract":"for (zo, zu ..., zn) 6 S . The orbit space S2n+1/Zp is the lens space mod p and is written by L(p). It is a compact, connected, orientable C°°-manifold of dimension 2n + l and has the structure of a CJF-complex with one cell in each dimension 0, 1, ••-, 2n + l. Let LnQ(p) be the 2π,-skeleton of L (p). The purpose of this paper is to prove some results on the stable homotopy type of the stunted space L%(p)/L*g(p) (n>m) and on the non-immersibility of the lens space L\\p) in the Euclidean space. After some preparations in §2, we determine the structure of the reduced Grothendieck ring K(L^(p)/LS(p)) of complex vector bundles in §3. Using the Adams operation we shall prove the following result in §4.","PeriodicalId":17080,"journal":{"name":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","volume":"91 1","pages":"285-292"},"PeriodicalIF":0.0000,"publicationDate":"1968-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32917/HMJ/1206138653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

for (zo, zu ..., zn) 6 S . The orbit space S2n+1/Zp is the lens space mod p and is written by L(p). It is a compact, connected, orientable C°°-manifold of dimension 2n + l and has the structure of a CJF-complex with one cell in each dimension 0, 1, ••-, 2n + l. Let LnQ(p) be the 2π,-skeleton of L (p). The purpose of this paper is to prove some results on the stable homotopy type of the stunted space L%(p)/L*g(p) (n>m) and on the non-immersibility of the lens space L\p) in the Euclidean space. After some preparations in §2, we determine the structure of the reduced Grothendieck ring K(L^(p)/LS(p)) of complex vector bundles in §3. Using the Adams operation we shall prove the following result in §4.
透镜空间的非浸没定理。2
对于(zo, zu…)(6) S。轨道空间S2n+1/Zp是透镜空间mod p,用L(p)表示。它是维数为2n + l的紧的、连通的、可定向的C°°-流形,具有cjf -复形的结构,每个维数为0、1、••-、2n + l。设LnQ(p)为l (p)的2π -骨架。本文的目的是证明发育空间l %(p)/ l *g(p) (n>m)的稳定同伦型和透镜空间l \p)在欧几里德空间中的不浸没性的一些结果。在§2的一些准备之后,我们确定了§3中复向量束的约简Grothendieck环K(L^(p)/LS(p))的结构。利用亚当斯运算,我们将证明§4中的下列结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信