Keshava Praveena Neriya Hegade, R. Natalia, B. Wehba, R. Bhat, M. Packirisamy
{"title":"Fluid microstructure interaction based air flow sensor","authors":"Keshava Praveena Neriya Hegade, R. Natalia, B. Wehba, R. Bhat, M. Packirisamy","doi":"10.1109/SENSORS43011.2019.8956692","DOIUrl":null,"url":null,"abstract":"Fluid structure interaction (FSI) of Polydimethylsiloxane (PDMS) microcantilever under fluid flow was studied for air flow sensing application. 3x8x0.250 mm microcantilever was used for the study. A low speed mini wind tunnel which provides laminar flow inside the test section was used. The micro cantilever was subjected to fluid load with flow rate up to 360ml/s. COMSOL simulation was performed using FSI module to test the microcantilever deflection. It was found that the deflection of the microcantilever beam increases with increase in fluid flowrate. Experimental result are in agreement with simulation results.","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":"22 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fluid structure interaction (FSI) of Polydimethylsiloxane (PDMS) microcantilever under fluid flow was studied for air flow sensing application. 3x8x0.250 mm microcantilever was used for the study. A low speed mini wind tunnel which provides laminar flow inside the test section was used. The micro cantilever was subjected to fluid load with flow rate up to 360ml/s. COMSOL simulation was performed using FSI module to test the microcantilever deflection. It was found that the deflection of the microcantilever beam increases with increase in fluid flowrate. Experimental result are in agreement with simulation results.