{"title":"A non-destructive non-contact method of the sea-bottom structure investigation","authors":"V.A. Chupin, G.I. Dolgikh, A.N. Samchenko","doi":"10.1016/j.spjpm.2017.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>The paper describes a nondestructive noncontact method for investigating the sea-bottom structure using hydroacoustic and laser radiation. A practical implementation of this method is also presented. The research complex incorporates a state-of-the-art low-frequency hydroacoustic radiating system and a system of coastal laser strainmeters arranged in the specially selected sea waters and coastal grounds. The hydroacoustic radiators are used to generate a seismic signal. Seismic superficial waves are recorded by the coastal laser strainmeters. Optical parts of the strainmeters are constructed as the unequal-path Michelson interferometer where the frequency-stable helium-neon lasers serve as emission sources. A preliminary model of the sea-bottom testing ground has been developed by application of geologic-geophysical procedures. The model-based analysis of the timing data of the recorded seismic waves was carried out. The prospectivity of the used method was proved.</p></div>","PeriodicalId":41808,"journal":{"name":"St Petersburg Polytechnic University Journal-Physics and Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.05.007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Polytechnic University Journal-Physics and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405722317300580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The paper describes a nondestructive noncontact method for investigating the sea-bottom structure using hydroacoustic and laser radiation. A practical implementation of this method is also presented. The research complex incorporates a state-of-the-art low-frequency hydroacoustic radiating system and a system of coastal laser strainmeters arranged in the specially selected sea waters and coastal grounds. The hydroacoustic radiators are used to generate a seismic signal. Seismic superficial waves are recorded by the coastal laser strainmeters. Optical parts of the strainmeters are constructed as the unequal-path Michelson interferometer where the frequency-stable helium-neon lasers serve as emission sources. A preliminary model of the sea-bottom testing ground has been developed by application of geologic-geophysical procedures. The model-based analysis of the timing data of the recorded seismic waves was carried out. The prospectivity of the used method was proved.