Leveraging Long-Range Temporal Relationships Between Proposals for Video Object Detection

Mykhailo Shvets, Wei Liu, A. Berg
{"title":"Leveraging Long-Range Temporal Relationships Between Proposals for Video Object Detection","authors":"Mykhailo Shvets, Wei Liu, A. Berg","doi":"10.1109/ICCV.2019.00985","DOIUrl":null,"url":null,"abstract":"Single-frame object detectors perform well on videos sometimes, even without temporal context. However, challenges such as occlusion, motion blur, and rare poses of objects are hard to resolve without temporal awareness. Thus, there is a strong need to improve video object detection by considering long-range temporal dependencies. In this paper, we present a light-weight modification to a single-frame detector that accounts for arbitrary long dependencies in a video. It improves the accuracy of a single-frame detector significantly with negligible compute overhead. The key component of our approach is a novel temporal relation module, operating on object proposals, that learns the similarities between proposals from different frames and selects proposals from past and/or future to support current proposals. Our final “causal\" model, without any offline post-processing steps, runs at a similar speed as a single-frame detector and achieves state-of-the-art video object detection on ImageNet VID dataset.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"31 1","pages":"9755-9763"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

Single-frame object detectors perform well on videos sometimes, even without temporal context. However, challenges such as occlusion, motion blur, and rare poses of objects are hard to resolve without temporal awareness. Thus, there is a strong need to improve video object detection by considering long-range temporal dependencies. In this paper, we present a light-weight modification to a single-frame detector that accounts for arbitrary long dependencies in a video. It improves the accuracy of a single-frame detector significantly with negligible compute overhead. The key component of our approach is a novel temporal relation module, operating on object proposals, that learns the similarities between proposals from different frames and selects proposals from past and/or future to support current proposals. Our final “causal" model, without any offline post-processing steps, runs at a similar speed as a single-frame detector and achieves state-of-the-art video object detection on ImageNet VID dataset.
利用视频目标检测提案之间的长期时间关系
单帧目标检测器有时在视频上表现良好,即使没有时间背景。然而,诸如遮挡、运动模糊和罕见的物体姿势等挑战很难在没有时间感知的情况下解决。因此,迫切需要通过考虑长期时间依赖性来改进视频目标检测。在本文中,我们提出了一种轻量级的修改单帧检测器,该检测器考虑了视频中任意长的依赖关系。它显著提高了单帧检测器的精度,而计算开销可以忽略不计。我们的方法的关键部分是一个新颖的时间关系模块,它对对象提案进行操作,学习来自不同框架的提案之间的相似性,并从过去和/或未来选择提案来支持当前提案。我们最终的“因果”模型,没有任何离线后处理步骤,以与单帧检测器相似的速度运行,并在ImageNet VID数据集上实现了最先进的视频对象检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信