Numerical Simulation-Based Damage Identification in Concrete

Giao Vu, J. Timothy, D. Singh, Leslie Saydak, E. Saenger, G. Meschke
{"title":"Numerical Simulation-Based Damage Identification in Concrete","authors":"Giao Vu, J. Timothy, D. Singh, Leslie Saydak, E. Saenger, G. Meschke","doi":"10.3390/modelling2030019","DOIUrl":null,"url":null,"abstract":"High costs for the repair of concrete structures can be prevented if damage at an early stage of degradation is detected and precautionary maintenance measures are applied. To this end, we use numerical wave propagation simulations to identify simulated damage in concrete using convolutional neural networks. Damage in concrete subjected to compression is modeled at the mesoscale using the discrete element method. Ultrasonic wave propagation simulation on the damaged concrete specimens is performed using the rotated staggered finite-difference grid method. The simulated ultrasonic signals are used to train a CNN-based classifier capable of classifying three different damage stages (microcrack initiation, microcrack growth and microcrack coalescence leading to macrocracks) with an overall accuracy of 77%. The performance of the classifier is improved by refining the dataset via an analysis of the averaged envelope of the signal. The classifier using the refined dataset has an overall accuracy of 90%.","PeriodicalId":89310,"journal":{"name":"WIT transactions on modelling and simulation","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIT transactions on modelling and simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/modelling2030019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

High costs for the repair of concrete structures can be prevented if damage at an early stage of degradation is detected and precautionary maintenance measures are applied. To this end, we use numerical wave propagation simulations to identify simulated damage in concrete using convolutional neural networks. Damage in concrete subjected to compression is modeled at the mesoscale using the discrete element method. Ultrasonic wave propagation simulation on the damaged concrete specimens is performed using the rotated staggered finite-difference grid method. The simulated ultrasonic signals are used to train a CNN-based classifier capable of classifying three different damage stages (microcrack initiation, microcrack growth and microcrack coalescence leading to macrocracks) with an overall accuracy of 77%. The performance of the classifier is improved by refining the dataset via an analysis of the averaged envelope of the signal. The classifier using the refined dataset has an overall accuracy of 90%.
基于数值模拟的混凝土损伤识别
如果在退化的早期阶段就检测到损坏,并采取预防性维修措施,就可以避免混凝土结构维修的高昂费用。为此,我们使用数值波传播模拟来识别使用卷积神经网络的混凝土模拟损伤。采用离散元法在细观尺度上模拟混凝土受压损伤。采用旋转交错有限差分网格法对损伤混凝土试件进行了超声传播模拟。利用模拟的超声信号训练基于cnn的分类器,该分类器能够对三个不同的损伤阶段(微裂纹萌生、微裂纹扩展和微裂纹合并导致大裂纹)进行分类,总体精度为77%。通过分析信号的平均包络来改进数据集,从而提高了分类器的性能。使用改进数据集的分类器总体准确率为90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信