automaTA

Changyoon Lee, D. Han, Hyoungwook Jin, Alice H. Oh
{"title":"automaTA","authors":"Changyoon Lee, D. Han, Hyoungwook Jin, Alice H. Oh","doi":"10.1145/3330430.3333658","DOIUrl":null,"url":null,"abstract":"When online learners have questions that are related to a specific task, they often use Q&A boards instead of web search because they are looking for context-specific answers. While lecturers, teaching assistants, and other learners can provide context-specific answers on the Q&A boards, there is often a high response latency which can impede their learning. We present automaTA, a prototype that suggests context-specific answers to online learners' questions by capturing the context of the questions. Our solution is to automate the response generation with a human-machine mixed approach, where humans generate high-quality answers, and the human-generated responses are used to train an automated algorithm to provide context-specific answers. automaTA adopts this approach as a prototype in which it generates automated answers for function-related questions in an online programming course. We conduct two user studies with undergraduate and graduate students with little or no experience with Python and found the potential that automaTA can automatically provide answers to context-specific questions without a human instructor, at scale.","PeriodicalId":20693,"journal":{"name":"Proceedings of the Sixth (2019) ACM Conference on Learning @ Scale","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth (2019) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3330430.3333658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

When online learners have questions that are related to a specific task, they often use Q&A boards instead of web search because they are looking for context-specific answers. While lecturers, teaching assistants, and other learners can provide context-specific answers on the Q&A boards, there is often a high response latency which can impede their learning. We present automaTA, a prototype that suggests context-specific answers to online learners' questions by capturing the context of the questions. Our solution is to automate the response generation with a human-machine mixed approach, where humans generate high-quality answers, and the human-generated responses are used to train an automated algorithm to provide context-specific answers. automaTA adopts this approach as a prototype in which it generates automated answers for function-related questions in an online programming course. We conduct two user studies with undergraduate and graduate students with little or no experience with Python and found the potential that automaTA can automatically provide answers to context-specific questions without a human instructor, at scale.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信