Rigorous "Rich Argument" in Microlensing Parallax

A. Gould
{"title":"Rigorous \"Rich Argument\" in Microlensing Parallax","authors":"A. Gould","doi":"10.5303/JKAS.2020.53.5.99","DOIUrl":null,"url":null,"abstract":"I show that when the observables $(\\vec \\pi_{\\rm E},t_{\\rm E},\\theta_{\\rm E},\\pi_s,\\vec \\mu_s)$ are well measured up to a discrete degeneracy in the microlensing parallax vector $\\vec \\pi_{\\rm E}$, the relative likelihood of the different solutions can be written in closed form $P_i = K H_i B_i$, where $H_i$ is the number of stars (potential lenses) having the mass and kinematics of the inferred parameters of solution $i$ and $B_i$ is an additional factor that is formally derived from the Jacobian of the transformation from Galactic to microlensing parameters. The Jacobian term $B_i$ constitutes an explicit evaluation of the ``Rich Argument'', i.e., that there is an extra geometric factor disfavoring large-parallax solutions in addition to the reduced frequency of lenses given by $H_i$. Here $t_{\\rm E}$ is the Einstein timescale, $\\theta_{\\rm E}$ is the angular Einstein radius, and $(\\pi_s,\\vec \\mu_s)$ are the (parallax, proper motion) of the microlensed source. I also discuss how this analytic expression degrades in the presence of finite errors in the measured observables.","PeriodicalId":8459,"journal":{"name":"arXiv: Instrumentation and Methods for Astrophysics","volume":"187 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5303/JKAS.2020.53.5.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

I show that when the observables $(\vec \pi_{\rm E},t_{\rm E},\theta_{\rm E},\pi_s,\vec \mu_s)$ are well measured up to a discrete degeneracy in the microlensing parallax vector $\vec \pi_{\rm E}$, the relative likelihood of the different solutions can be written in closed form $P_i = K H_i B_i$, where $H_i$ is the number of stars (potential lenses) having the mass and kinematics of the inferred parameters of solution $i$ and $B_i$ is an additional factor that is formally derived from the Jacobian of the transformation from Galactic to microlensing parameters. The Jacobian term $B_i$ constitutes an explicit evaluation of the ``Rich Argument'', i.e., that there is an extra geometric factor disfavoring large-parallax solutions in addition to the reduced frequency of lenses given by $H_i$. Here $t_{\rm E}$ is the Einstein timescale, $\theta_{\rm E}$ is the angular Einstein radius, and $(\pi_s,\vec \mu_s)$ are the (parallax, proper motion) of the microlensed source. I also discuss how this analytic expression degrades in the presence of finite errors in the measured observables.
微透镜视差的严格“富论证”
我表明,当观测值$(\vec \pi_{\rm E},t_{\rm E},\theta_{\rm E},\pi_s,\vec \mu_s)$被很好地测量到微透镜视差矢量$\vec \pi_{\rm E}$的离散退化时,不同解的相对可能性可以写成封闭形式$P_i = K H_i B_i$,其中$H_i$是恒星(潜在透镜)的数量,具有解$i$的推断参数的质量和运动学,$B_i$是一个额外的因素,从银河到微透镜参数转换的雅可比矩阵正式推导出来。雅可比项$B_i$构成了对“富论证”的明确评价,即,除了$H_i$给出的透镜频率降低之外,还有一个额外的几何因素不利于大视差解。这里$t_{\rm E}$是爱因斯坦时间标度,$\theta_{\rm E}$是爱因斯坦角半径,$(\pi_s,\vec \mu_s)$是微透镜源的(视差,固有运动)。我还讨论了在测量的可观测物中存在有限误差时,这种解析表达式是如何退化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信