Multi-population mortality modelling: a Bayesian hierarchical approach

IF 1.7 3区 经济学 Q2 ECONOMICS
ASTIN Bulletin Pub Date : 2023-08-25 DOI:10.1017/asb.2023.29
Jianjie Shi, Yanlin Shi, Pengjie Wang, Dan Zhu
{"title":"Multi-population mortality modelling: a Bayesian hierarchical approach","authors":"Jianjie Shi, Yanlin Shi, Pengjie Wang, Dan Zhu","doi":"10.1017/asb.2023.29","DOIUrl":null,"url":null,"abstract":"\n Modelling mortality co-movements for multiple populations has significant implications for mortality/longevity risk management. This paper assumes that multiple populations are heterogeneous sub-populations randomly drawn from a hypothetical super-population. Those heterogeneous sub-populations may exhibit various patterns of mortality dynamics across different age groups. We propose a hierarchical structure of these age patterns to ensure the model stability and use a Vector Error Correction Model (VECM) to fit the co-movements over time. Especially, a structural analysis based on the VECM is implemented to investigate potential interdependence among mortality dynamics of the examined populations. An efficient Bayesian Markov Chain Monte-Carlo method is also developed to estimate the unknown parameters to address the computational complexity. Our empirical application to the mortality data collected for the Group of Seven nations demonstrates the efficacy of our approach.","PeriodicalId":8617,"journal":{"name":"ASTIN Bulletin","volume":"128 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2023.29","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Modelling mortality co-movements for multiple populations has significant implications for mortality/longevity risk management. This paper assumes that multiple populations are heterogeneous sub-populations randomly drawn from a hypothetical super-population. Those heterogeneous sub-populations may exhibit various patterns of mortality dynamics across different age groups. We propose a hierarchical structure of these age patterns to ensure the model stability and use a Vector Error Correction Model (VECM) to fit the co-movements over time. Especially, a structural analysis based on the VECM is implemented to investigate potential interdependence among mortality dynamics of the examined populations. An efficient Bayesian Markov Chain Monte-Carlo method is also developed to estimate the unknown parameters to address the computational complexity. Our empirical application to the mortality data collected for the Group of Seven nations demonstrates the efficacy of our approach.
多种群死亡率模型:贝叶斯分层方法
模拟多个人群的死亡率共同运动对死亡率/寿命风险管理具有重要意义。本文假设多个种群是从一个假想的超级种群中随机抽取的异质亚种群。这些异质亚群可能在不同年龄组中表现出不同的死亡率动态模式。我们提出了这些年龄模式的分层结构,以确保模型的稳定性,并使用向量误差校正模型(VECM)来拟合随时间的共同运动。特别地,基于VECM的结构分析被用于研究被测种群死亡率动态之间潜在的相互依存关系。提出了一种有效的贝叶斯马尔可夫链蒙特卡罗方法来估计未知参数,以解决计算复杂性问题。我们对七国集团收集的死亡率数据的实证应用表明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ASTIN Bulletin
ASTIN Bulletin 数学-数学跨学科应用
CiteScore
3.20
自引率
5.30%
发文量
24
审稿时长
>12 weeks
期刊介绍: ASTIN Bulletin publishes papers that are relevant to any branch of actuarial science and insurance mathematics. Its papers are quantitative and scientific in nature, and draw on theory and methods developed in any branch of the mathematical sciences including actuarial mathematics, statistics, probability, financial mathematics and econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信