{"title":"Coefficient estimates for $H^p$ spaces with $0","authors":"Ole Fredrik Brevig, E. Saksman","doi":"10.1090/PROC/14995","DOIUrl":null,"url":null,"abstract":"Let $C(k,p)$ denote the smallest real number such that the estimate $|a_k|\\leq C(k,p)\\|f\\|_{H^p}$ holds for every $f(z)=\\sum_{n\\geq0}a_n z^n$ in the $H^p$ space of the unit disc. We compute $C(2,p)$ for $0<p<1$ and $C(3,2/3)$, and identify the functions attaining equality in the estimate.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"203 1","pages":"3911-3924"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/14995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let $C(k,p)$ denote the smallest real number such that the estimate $|a_k|\leq C(k,p)\|f\|_{H^p}$ holds for every $f(z)=\sum_{n\geq0}a_n z^n$ in the $H^p$ space of the unit disc. We compute $C(2,p)$ for $0