Towards Sequential Multivariate Fault Prediction for Vehicular Predictive Maintenance

A. Hafeez, Eduardo Alonso, Aram Ter-Sarkisov
{"title":"Towards Sequential Multivariate Fault Prediction for Vehicular Predictive Maintenance","authors":"A. Hafeez, Eduardo Alonso, Aram Ter-Sarkisov","doi":"10.1109/ICMLA52953.2021.00167","DOIUrl":null,"url":null,"abstract":"Predictive maintenance, which has traditionally used anomaly detection methods on sensory data, is now being replaced by event-based techniques. These methods utilise events with multiple temporal (and often non-numeric) features, produced by diagnostic modules. This raises the need of learning numerical event representations to predict the next fault event in industrial machines, specially vehicles, that use Diagnostic Trouble Codes (DTCs). We propose a predictive maintenance approach, named Sequential Multivariate Fault Prediction (SMFP), for predicting the next multivariate DTC fault in an event sequence, using Long Short-Term Memory Networks (LSTMs) and jointly learned event embeddings. By performing an in-depth comparison of different architectural choices and contextual preprocessing techniques, we provide an initial baseline for SMFP that achieves top-3 accuracy of 63% on predicting multivariate fault with 3 collective output layers, using vehicle maintenance data as a case study.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"309 1","pages":"1016-1021"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Predictive maintenance, which has traditionally used anomaly detection methods on sensory data, is now being replaced by event-based techniques. These methods utilise events with multiple temporal (and often non-numeric) features, produced by diagnostic modules. This raises the need of learning numerical event representations to predict the next fault event in industrial machines, specially vehicles, that use Diagnostic Trouble Codes (DTCs). We propose a predictive maintenance approach, named Sequential Multivariate Fault Prediction (SMFP), for predicting the next multivariate DTC fault in an event sequence, using Long Short-Term Memory Networks (LSTMs) and jointly learned event embeddings. By performing an in-depth comparison of different architectural choices and contextual preprocessing techniques, we provide an initial baseline for SMFP that achieves top-3 accuracy of 63% on predicting multivariate fault with 3 collective output layers, using vehicle maintenance data as a case study.
面向车辆预测性维修的序列多变量故障预测研究
预测性维护传统上使用基于感官数据的异常检测方法,现在正在被基于事件的技术所取代。这些方法利用由诊断模块产生的具有多个时间(通常是非数字)特征的事件。这就提出了学习数字事件表示来预测工业机器,特别是使用诊断故障代码(dtc)的车辆中的下一个故障事件的需求。我们提出了一种预测性维护方法,称为顺序多变量故障预测(SMFP),用于预测事件序列中的下一个多变量DTC故障,使用长短期记忆网络(LSTMs)和联合学习的事件嵌入。通过对不同的架构选择和上下文预处理技术进行深入比较,我们为SMFP提供了一个初始基线,该基线在预测3个集体输出层的多变量故障时达到了63%的前3名准确率,并以车辆维护数据为例进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信