{"title":"Low Cost Synthesis of Single Walled Carbon Nanotubes from Coal Tar Using Arc Discharge Method","authors":"M. Saha","doi":"10.9790/4861-0901032731","DOIUrl":null,"url":null,"abstract":"There are various methods such as arc discharge, laser ablation, chemical vapour deposition (CVD), template-directed synthesis for the growth of CNTs in the presence of catalyst particles. The production of carbon nanotubes in large quantities is possible with inexpensive coal as the starting carbon source by the arc discharge technique. It is found that a large amount of carbon nanotubes of good quality can be obtained in the cathode deposits in which carbon nanotubes are present in nest-like bundles. For more than two decades, now, there has been extensive research on the production of carbon nanotubes (CNT) and optimization of its manufacture for the industrial applications. It is believed that they are the strong enough but most flexible materials known to mankind. They have potential to take part in new nanofabricated materials. It is known that, carbon nanotubes could behave as the ultimate one-dimensional material with remarkable mechanical properties. Moreover, carbon nanotubes exhibit strong electrical and thermal conducting properties. This paper primarily concentrates on the optimising such parameters related to the mass production of the product. It has been shown through Simplex process that based on the cost of the SWNT obtained by the arc discharge technique, the voltage and the current should lie in the range of 30 42 V and 49 66 A respectively. Any combination above the given values will lead to a power consumption cost beyond the final product cost, in turn leading to infeasibility of the process. Strong expectations exist for future use of carbon nanotubes as composite materials in a large number of industries. Production cost and control of the purity and properties of such materials will influence the impacts nanotubes on the chemical, computer and construction industries. Coal properties in this case are also important. Weak bonds and mineral matter in the coal play an important role in the formation of the nanotubes.","PeriodicalId":14502,"journal":{"name":"IOSR Journal of Applied Physics","volume":"34 1","pages":"27-31"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOSR Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9790/4861-0901032731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
There are various methods such as arc discharge, laser ablation, chemical vapour deposition (CVD), template-directed synthesis for the growth of CNTs in the presence of catalyst particles. The production of carbon nanotubes in large quantities is possible with inexpensive coal as the starting carbon source by the arc discharge technique. It is found that a large amount of carbon nanotubes of good quality can be obtained in the cathode deposits in which carbon nanotubes are present in nest-like bundles. For more than two decades, now, there has been extensive research on the production of carbon nanotubes (CNT) and optimization of its manufacture for the industrial applications. It is believed that they are the strong enough but most flexible materials known to mankind. They have potential to take part in new nanofabricated materials. It is known that, carbon nanotubes could behave as the ultimate one-dimensional material with remarkable mechanical properties. Moreover, carbon nanotubes exhibit strong electrical and thermal conducting properties. This paper primarily concentrates on the optimising such parameters related to the mass production of the product. It has been shown through Simplex process that based on the cost of the SWNT obtained by the arc discharge technique, the voltage and the current should lie in the range of 30 42 V and 49 66 A respectively. Any combination above the given values will lead to a power consumption cost beyond the final product cost, in turn leading to infeasibility of the process. Strong expectations exist for future use of carbon nanotubes as composite materials in a large number of industries. Production cost and control of the purity and properties of such materials will influence the impacts nanotubes on the chemical, computer and construction industries. Coal properties in this case are also important. Weak bonds and mineral matter in the coal play an important role in the formation of the nanotubes.