Energy Based Volumetric Internal Heating on Bénard-Marangoni FTC in a Ferrofluid-Porous Saturated Layer: Effects of MFD Viscosity and Thermal Bounded Surfaces

Q1 Engineering
S. Bhavya, C. Nanjundappa
{"title":"Energy Based Volumetric Internal Heating on Bénard-Marangoni FTC in a Ferrofluid-Porous Saturated Layer: Effects of MFD Viscosity and Thermal Bounded Surfaces","authors":"S. Bhavya, C. Nanjundappa","doi":"10.37622/ijaer/17.1.2022.21-29","DOIUrl":null,"url":null,"abstract":"A linear stability analysis of energy based volumetric internal heating on Bénard-Marangoni ferrothermal convection (FTC) in a ferrofluid (FF) porous saturated layer with effects of magnetic field dependent (MFD) viscosity and thermal bounded surfaces is investigated. The variation of the energy based modified critical Rayleigh number, gc R  , and the convection cell, c a , with rate of heat source, is calculated with a set of lower-rigid and upper-stress free (R-F) bounded surfaces. Using numerically the Galerkin technique (GT) and analytically the regular perturbation technique (RPT) it is possible to deduce the condition for the onset of FTC from a state of pure conduction. Here we find that the rate of internal heat source increases, gc R  decreases, showing that the system is destabilized, and c a increases, showing that the cells size become narrower. Numerical results are discussed in the table and graphically to reveal the details of stability characteristics for different physical parameters akin to MFD viscosity parameter, porous parameter, magnetic and","PeriodicalId":36710,"journal":{"name":"International Journal of Applied Engineering Research (Netherlands)","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Engineering Research (Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37622/ijaer/17.1.2022.21-29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A linear stability analysis of energy based volumetric internal heating on Bénard-Marangoni ferrothermal convection (FTC) in a ferrofluid (FF) porous saturated layer with effects of magnetic field dependent (MFD) viscosity and thermal bounded surfaces is investigated. The variation of the energy based modified critical Rayleigh number, gc R  , and the convection cell, c a , with rate of heat source, is calculated with a set of lower-rigid and upper-stress free (R-F) bounded surfaces. Using numerically the Galerkin technique (GT) and analytically the regular perturbation technique (RPT) it is possible to deduce the condition for the onset of FTC from a state of pure conduction. Here we find that the rate of internal heat source increases, gc R  decreases, showing that the system is destabilized, and c a increases, showing that the cells size become narrower. Numerical results are discussed in the table and graphically to reveal the details of stability characteristics for different physical parameters akin to MFD viscosity parameter, porous parameter, magnetic and
铁磁流体-多孔饱和层中b - marangoni FTC的基于能量的体积内加热:MFD粘度和热界面的影响
研究了含磁场依赖黏度(MFD)和热界面影响的铁磁流体(FF)多孔饱和层中b - marangoni铁磁热对流(FTC)基于能量的体积内加热的线性稳定性。利用一组低刚性、高应力无边界曲面,计算了基于能量的修正临界瑞利数(gc R)和对流单元ca随热源速率的变化。利用数值上的伽辽金技术(GT)和解析上的正则微扰技术(RPT)可以从纯导电状态推断出FTC发生的条件。在这里,我们发现内热源速率增加,gc R值减少,表明系统不稳定,c a值增加,表明细胞尺寸变窄。数值结果以图表形式讨论,以揭示不同物理参数(如MFD粘度参数、多孔参数、磁性参数和磁性参数)下的稳定性特性细节
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信