T. Hagio, Jae-Hyeok Park, Yan Lin, Yanqin Tian, Y. Hu, Xinling Li, Y. Kamimoto, R. Ichino
{"title":"Facile Hydrothermal Synthesis of EAB‐Type Zeolite under Static Synthesis Conditions","authors":"T. Hagio, Jae-Hyeok Park, Yan Lin, Yanqin Tian, Y. Hu, Xinling Li, Y. Kamimoto, R. Ichino","doi":"10.1002/crat.202000163","DOIUrl":null,"url":null,"abstract":"Conventionally, EAB‐type zeolites are crystallized by hydrothermal synthesis for many days under agitational synthesis conditions such as rotation or stirring. In the present study, EAB‐type zeolite is obtained by hydrothermal synthesis within 12 h under static synthesis conditions for the first time. The effects of crystallization temperature, aging of the precursor sol, and addition of seed crystals are investigated. The results reveal that EAB‐type zeolite can be obtained when using a precursor sol with short aging time followed by hydrothermal synthesis in a very narrow temperature range 110 °C−120 °C under static synthesis condition. Addition of seed crystals is found to suppress the formation of SOD‐type zeolite, the primary phase at high hydrothermal synthesis temperatures, while it does not increase the crystallization rate of EAB‐type zeolite. Furthermore, the crystallization behavior at 120 °C is examined by varying the synthesis time. EAB‐type zeolite with invariably twinned plate‐like morphology starts to crystallize between synthesis time of 3 to 6 h at 120 °C under the static synthesis condition.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"210 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/crat.202000163","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 2
Abstract
Conventionally, EAB‐type zeolites are crystallized by hydrothermal synthesis for many days under agitational synthesis conditions such as rotation or stirring. In the present study, EAB‐type zeolite is obtained by hydrothermal synthesis within 12 h under static synthesis conditions for the first time. The effects of crystallization temperature, aging of the precursor sol, and addition of seed crystals are investigated. The results reveal that EAB‐type zeolite can be obtained when using a precursor sol with short aging time followed by hydrothermal synthesis in a very narrow temperature range 110 °C−120 °C under static synthesis condition. Addition of seed crystals is found to suppress the formation of SOD‐type zeolite, the primary phase at high hydrothermal synthesis temperatures, while it does not increase the crystallization rate of EAB‐type zeolite. Furthermore, the crystallization behavior at 120 °C is examined by varying the synthesis time. EAB‐type zeolite with invariably twinned plate‐like morphology starts to crystallize between synthesis time of 3 to 6 h at 120 °C under the static synthesis condition.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing