Dynamic prediction for thermal error of high-speed machine center using grey bootstrap

Taomei Lv, Fannian Meng, Jiangping Tao
{"title":"Dynamic prediction for thermal error of high-speed machine center using grey bootstrap","authors":"Taomei Lv, Fannian Meng, Jiangping Tao","doi":"10.1109/CCDC.2017.7978272","DOIUrl":null,"url":null,"abstract":"Thermal error is always the key factor which affects processing precision of high-speed machine center. How to predict the thermal error of the high-speed machine center, is the prerequisite and foundation of thermal error compensation. To solve this problem, a grey bootstrap model is proposed, which is first used thermal error prediction of high-speed machine center. Experimental study shows that the prediction accuracy is very high using grey bootstrap model, and the maximum, the minimum and the mean of the relative errors of the predicted results are respectively 7.72%, 1.19% and 4.48%, and the reliability of the predicted interval is proved to be 100%. The point prediction and interval prediction are actualized, which solve the problem of dynamic evaluation of thermal error of high-speed machine center.","PeriodicalId":6588,"journal":{"name":"2017 29th Chinese Control And Decision Conference (CCDC)","volume":"140 1","pages":"6130-6133"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2017.7978272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal error is always the key factor which affects processing precision of high-speed machine center. How to predict the thermal error of the high-speed machine center, is the prerequisite and foundation of thermal error compensation. To solve this problem, a grey bootstrap model is proposed, which is first used thermal error prediction of high-speed machine center. Experimental study shows that the prediction accuracy is very high using grey bootstrap model, and the maximum, the minimum and the mean of the relative errors of the predicted results are respectively 7.72%, 1.19% and 4.48%, and the reliability of the predicted interval is proved to be 100%. The point prediction and interval prediction are actualized, which solve the problem of dynamic evaluation of thermal error of high-speed machine center.
基于灰色自举法的高速加工中心热误差动态预测
热误差一直是影响高速加工中心加工精度的关键因素。如何预测高速加工中心的热误差,是热误差补偿的前提和基础。针对这一问题,提出了一种灰色自提模型,并首次应用于高速加工中心的热误差预测。实验研究表明,采用灰色自strap模型的预测精度很高,预测结果的相对误差最大值、最小值和平均值分别为7.72%、1.19%和4.48%,预测区间的可靠性证明为100%。实现了点预测和区间预测,解决了高速加工中心热误差的动态评价问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信